Research elucidates way lungs fight bacteria and prevent infection

Jan 23, 2009

Actor and pancreatic cancer patient Patrick Swayze's recent hospitalization with pneumonia as a result of his compromised immune system underscores the sensitivity of the lungs: many patients die from lung complications of a disease, rather than the disease itself.

Lungs are delicate and exposed to the environment, almost like an open wound. Consequently, the body has developed an elaborate immuno-defense system to combat inhaled pathogens and bacteria - in a healthy individual, this system effectively blocks hundreds of potentially sickening assaults daily.

It works like this: airway epithelial cells initiate an immune response to inhaled bacteria by signaling for white blood cells to move from the bloodstream into the lungs and airway to fight potential infection.

For the first time, researchers at Columbia University Medical Center have demonstrated that this signaling cascade includes the activation of epithelial proteases, a type of enzyme capable of opening the junctions between the cells in the airway mucosa, to enable the white blood cells to get through to the site of the infection. The opening of these junctions is initiated by a change in calcium levels.

The work by Drs. Jarin Chun and Alice Prince in the Departments of Pharmacology and Pediatrics at Columbia's College of Physicians and Surgeons was published Jan. 22, 2009 in the journal Cell Host & Microbe.

Getting white blood cells to the site of an infection, however, is often a double-edged sword. On the one hand, having as many white blood cells as possible at the site of an infection is beneficial, but on the other hand too many white blood cells can lead to excessive inflammation, interfering with breathing and damaging the airways.

Cystic fibrosis is one disease where this work might have particular import, Dr. Chun says. People with cystic fibrosis possess an abnormal gene that causes normal mucus to become thick and sticky, leaving the lung more prone to infection and inflammation, while still killing infection-causing bacteria.

The findings, in mice, demonstrate a way to inhibit proteases and restrict the junctions between cells in the airway mucosa, meaning that fewer white blood cells can get into the airway - causing less inflammation.

Thus, epithelial proteases could be an important target to control inflammation in the lung, and could serve as the basis for the development of novel drugs to help the human body get the optimal number of white blood cells to an infection site without letting inflammation spiral out of control.

Source: Columbia University

Explore further: Study finds that high fat diet changes gut microbe populations

Related Stories

Human cell death captured for first time

Jun 16, 2015

Scientists based at the La Trobe Institute of Molecular Science have discovered that some molecules which are central to the body's defence and immune system are ejected from inside the decomposing cell to ...

Graphene oxide biodegrades with help of human enzymes

Jun 02, 2015

Graphene Flagship researchers show how graphene oxide suspended in water biodegrades in a reaction catalysed by a human enzyme, with the effectiveness of the breakdown dependent on the colloidal stability ...

A turning point in the physics of blood

May 07, 2015

Mike Graham knows that fluid dynamics can reveal much about how the flow of blood helps and hinders individual blood cells as they go about their work.

Recommended for you

Organ transplant rejection may not be permanent

14 hours ago

Rejection of transplanted organs in hosts that were previously tolerant may not be permanent, report scientists from the University of Chicago. Using a mouse model of cardiac transplantation, they found that immune tolerance ...

Researchers find key mechanism that causes neuropathic pain

16 hours ago

Scientists at the University of California, Davis, have identified a key mechanism in neuropathic pain. The discovery could eventually benefit millions of patients with chronic pain from trauma, diabetes, shingles, multiple ...

Deep sea light shines on drug delivery potential

16 hours ago

A naturally occurring bioluminescent protein found in deep sea shrimp—which helps the crustacean spit a glowing cloud at predators—has been touted as a game-changer in terms of monitoring the way drugs ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.