New understanding of how we remember traumatic events

October 23, 2008

( -- Neuroscientists at The University of Queensland have discovered a new way to explain how emotional events can sometimes lead to disturbing long term memories.

In evolutionary terms, the brain's ability to remember a fear or trauma response has been crucial to our long term survival.

However, in the modern world, when a similar type of fear response is triggered by a traumatic event such as being in combat; being exposed to abuse or being involved a major car accident, we do not want to repeatedly re-experience the episode, in vivid detail, for the rest of our lives.

During studies of the almond-shaped part of the brain called the amygdala – a region associated with processing emotions – Queensland Brain Institute (QBI) scientists have uncovered a cellular mechanism underlying the formation of emotional memories, which occurs in the presence of a well known stress hormone.

In a scientific paper published in the Journal of Neuroscience, QBI's Dr Louise Faber and her colleagues have demonstrated how noradrenaline, the brain's equivalent of adrenaline, affects the amygdala by controlling chemical and electrical pathways in the brain responsible for memory formation.

“This is a new way of understanding how neurons form long term memories in the amygdala,” Dr Faber said.

“Our strongest and most vivid human memories are usually associated with strong emotional events such as those associated with extreme fear, love and rage.”

“For many of us, our deepest memories are mental snapshots taken during times of high emotional impact or involvement,” she said.

“Some aspects of memory formation are incredibly robust – and the mechanism we've discovered opens another door in terms of understanding how these memories are formed.”

Dr Faber said her team's discovery could help other scientists to elucidate new targets, leading to better treatments for conditions such as anxiety disorders and post-traumatic stress disorder.

Established with the generous support of the Atlantic Philanthropies in 2003 as part of the Queensland Government's Smart State Initiative, QBI is dedicated to understanding the molecular basis of brain function and applying this knowledge to the development of new therapeutics to treat brain and mental health disorders.

Paper: “Modulation of SK channel trafficking by beta adrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala,” Journal of Neuroscience, 22 October 2008.

Provided by University of Queensland

Explore further: New math model represents how mind processes sequential memory, may help understand psychiatric disorders

Related Stories

What happens when your brain can't tell which way is up?

October 13, 2015

In space, there is no "up" or "down." That can mess with the human brain and affect the way people move and think in space. An investigation on the International Space Station seeks to understand how the brain changes in ...

Biochemists uncover structure of cellular memory mechanism

October 14, 2015

Calcium is a crucial element in the body that controls thought, movement and other bodily functions. These events are directed by specialized proteins called ion channels that allow the flow of calcium ions in and out of ...

A supercomputer for the 'long tail' of science

October 20, 2015

The San Diego Supercomputer Center (SDSC) at the University of California, San Diego this week formally launched "Comet," a new petascale supercomputer designed to transform scientific research by expanding computational ...

How a flying bat sees space

October 21, 2015

Recordings from echolocating bat brains have for the first time given researchers a view into how mammals understand 3-D space.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.