When healing turns to scarring: Research reveals why it happens and how to stop it

September 18, 2008

For the first time, research from The University of Western Ontario has revealed the mechanisms involved in the origin of scarring or fibrotic diseases, as well as a way to control it. The study, led by Andrew Leask of the CIHR Group in Skeletal Development and Remodeling, is published in the Journal of Clinical Investigation.

"People are generally unaware of how prevalent scarring diseases are, and the impact they have on our health," says Leask, a professor in the Department of Physiology and Pharmacology at Western's Schulich School of Medicine & Dentistry. "Cardiovascular and other diseases including diabetes, cancer, and pulmonary fibrosis all involve scarring, which affects the organs' ability to function. Another example is scleroderma, a progressive scarring disease affecting 300,000 people in the United States and 40,000 Canadians. It's estimated about 40% of all deaths and health care costs in North America are related to scarring or fibrosis."

During tissue repair, specialized cells called myofibroblasts migrate to the wound where they generate the adhesive and tensile forces required for wound closure. Normally, these myofibroblasts then disappear from the wound. But if they persist and continue to make connective tissue, it can become too thick, preventing the organ from functioning properly. So for instance, in the case of diabetes, this scarring could cause the kidney to shut down, requiring dialysis or a transplant.

The research team which included investigators from Mount Sinai Hospital in Toronto and University College London in England, identified that a particular protein called glycogen synthase kinase 3 normally acts as a brake to terminate repair. If this protein is impaired, scarring results after wounding. Investigators also found elevated levels of a protein called endothelin-1. Next, they used a drug, already on the market, which blocks endothelin-1 and found it prevented scarring but did not affect wound closure in mice. While the use of the drug for this purpose would still have to be tested in humans, Leask believes this therapy could stop fibrosis from occurring without affecting normal tissue repair.

Source: University of Western Ontario

Explore further: New mussel-inspired surgical protein glue: Close wounds, open medical possibilities

Related Stories

Microscopic "walkers" find their way across cell surfaces

October 23, 2014

Nature has developed a wide variety of methods for guiding particular cells, enzymes, and molecules to specific structures inside the body: White blood cells can find their way to the site of an infection, while scar-forming ...

Innovative strategy to facilitate organ repair

April 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur from the ...

Richard III faces final battle in London court

March 13, 2014

The final battle of British king Richard III, who died at war in 1485, began Thursday at London's High Court, which must decide where his remains will be laid to rest.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.