Experimental anti-cancer synthetic molecule targets tumor cell growth and angiogenesis

Jun 18, 2008

A recent study conducted by three French CNRS (Centre National de la Recherche Scientifique) laboratories describes a new candidate anti-cancer drug, named HB-19. In contrast to conventional anti-cancer drugs, HB-19 has a dual mechanism of action by its capacity to target independently both tumor cell growth, as well as tumor angiogenesis (formation of new blood vessels which bring necessary nutrients and oxygen to the tumor mass). The molecular target of HB-19 is nucleolin expressed on the surface of all activated cells, in particular rapidly growing tumor cells and endothelial cells that play a key role in angiogenesis. The results of this work, directed by Ara Hovanessian, are published in the June 18 edition of PLoS ONE.

Nucleolin is one of the major proteins of the nucleus, but it is also expressed on the cell surface where it serves as a binding protein for variety of ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. The specific binding of HB-19 to surface-expressed nucleolin leads to internalization of the complex followed by degradation of this multifunctional protein.

Using various in vitro and in vivo experimental models, the authors show that HB-19 is a potent inhibitor of tumor cell growth and angiogenesis. In mice grafted with human breast tumor cells, HB-19 treatment markedly suppresses the progression of tumor development, and in some cases eliminates measurable tumors while displaying no toxicity to normal tissue.

The in vivo antitumoral action of HB-19 in this mouse model (i.e. inhibition of tumor development) is comparable to that of 5-fluorouracil, a drug that is used to treat several types of human cancer. However, 5-fluorouracil has toxic effects on circulating white blood cells whereas HB-19 treatment demonstrated no observable toxicity in this study. Another possible advantage of HB-19 over existing anti-cancer drugs is its reproducible synthesis by conventional techniques to generate a stable product that is readily soluble in physiological solutions.

The direct action of HB-19 on tumor growth and angiogenesis fulfills the criteria for an efficient anticancer drug, since combination therapy targeting both of these events is considered an optimal strategy in cancer management. In view of such dual inhibitory action, reproducible synthesis, high stability, selective tissue retention, and in vivo lack of toxicity, HB-19 may be a promising candidate for evaluation in future clinical trials.

Source: Public Library of Science

Explore further: Study finds association between exposure to aflatoxin and gallbladder cancer

Related Stories

NSA winds down once-secret phone-records collection program

8 hours ago

The National Security Agency has begun winding down its collection and storage of American phone records after the Senate failed to agree on a path forward to change or extend the once-secret program ahead of its expiration ...

Pipeline that leaked wasn't equipped with auto shut-off

8 hours ago

The pipeline that leaked thousands of gallons of oil on the California coast was the only pipe of its kind in the county not required to have an automatic shut-off valve because of a court fight nearly three ...

Uber drivers fined in Hungary

8 hours ago

The Hungarian tax authority fined Uber drivers in its first probe against the ride-sharing service which the economy ministry said Saturday "ignores passenger safety" and must be made to follow regulations.

Recommended for you

Therapy-resistant breast cancer mechanism revealed

51 minutes ago

Mitsuyoshi Nakao, Director of the Institute of Molecular Embryology and Genetics in Kumamoto University and Associate Professor Noriko Saitoh revealed that a cluster of defined, non-coding RNAs are mechanistically involved ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.