New cheaper method for mapping disease genes

May 27, 2008

Scientists at the Swedish medical university Karolinska Institutet have developed a new DNA-sequencing method that is much cheaper than those currently in use in laboratories. They hope that this new method will make it possible to map disease genes in large patient groups, which in turn can mean quicker breakthroughs for new treatments for a wide variety of diseases.

By mapping DNA, scientists can trace disease genes, understand how bacteria and viruses cause infection and chart the evolution of mankind and other species. When the HUGO project mapped the first human genome not so long ago, it cost over a billion kronor and took over ten years. Today, there are instruments on the market that can do the same thing in a matter of months for less then ten million kronor. However, if scientists are to have opportunities to study disease genes in detail, and from hundreds of patients, the process must be much, much cheaper.

A Swedish team, led by Sten Linnarsson at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet, has now developed a new DNA-sequencing method that can one day make it possible to map out the human genome for one-tenth of today’s cost. The method is presented in the online edition of the scientific journal Nature Biotechnology.

The scientists took DNA from the enteric bacteria E. coli and split it into tiny fragments, each with a length of approximately 200 nucleotides (the building blocks of DNA: A, C, G and T). These fragments were then spread out and fixed onto a microscope slide so that several million fragments could be analysed simultaneously. These fragments were then rinsed in a fluid containing short DNA sequences of five nucleotides, marked with a fluorescent dye, which allowed them to examine which of the short DNA sequences adhered to each fragment.

After having rinsed all possible short DNA sequences over several million fragments, the scientists were able to then digitally piece together the sequences into one complete chain of the entire bacteria genome, a total of 4.5 million nucleotides long.

“Everything takes place in our own specially built instrument, which comprises a microscope powerful enough to take pictures of DNA fragments, an automated pipette and a small flow chamber with a glass surface on which the reaction itself occurs,” says Sten Linnarsson.

This is not the first time that Swedish scientists have successfully developed new methods of DNA sequencing. Ten years ago Pål Nyrén and his colleagues from the Royal Institute of Technology published Pyrosequencing, one of the most common methods of mapping DNA in use today.

Source: Karolinska Institutet

Explore further: Method enables researchers to sequence complex sugar molecules for the first time

Related Stories

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Bar-coding technique opens up studies within single cells

September 14, 2015

All of the cells in a particular tissue sample are not necessarily the same—they can vary widely in terms of genetic content, composition, and function. Yet many studies and analytical techniques aimed at understanding ...

Microbial diversity insights are often strongly biased

September 2, 2015

Substantial methodological biases in soil fungal diversity were demonstrated by an Estonian-German research consortium (University of Tartu and EMBL). It turns out that even sophisticated and innovative approaches such as ...

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.