Combination vaccine protects monkeys from ebola and Marburg viruses

February 26, 2008

An experimental, combination vaccine against Ebola and Marburg viruses using virus-like particles (VLPs) provides complete protection against infection in monkeys. Researchers from the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) report their results today (Feb. 26) at the 2008 ASM Biodefense and Emerging Diseases Research Meeting in Baltimore, MD.

“VLPs are one of the most promising candidates for protecting humans against Ebola and Marburg virus infections,” says Dr. Kelly Warfield, a researcher at USAMRIID who presented the study. They could also be safer than other vaccine candidates.

Traditionally vaccines against viral diseases have consisted of whole viruses, either the one that causes the disease in a weakened or dead state (like the polio vaccine) or a genetically similar virus that does not usually cause disease but elicits a protective immune response. The problem with this approach is there is the risk, however small, of viral reactivation and infection.

“Since the VLP vaccine does not use a whole virus, there is no chance of infection,” says Warfield, who notes that some VLP-based vaccines, such as the human papillomavirus (HPV) vaccine, are already on the market.

To create the vaccine, Warfield and her colleagues infected insect cells with specially engineered baculoviruses. The infected cells then produced VLPs for either Marburg or Ebola, depending on the baculovirus, which were then purified. They mixed the two together and vaccinated the monkeys with it.

“Following challenge with Ebola or Marburg virus, all the VLP-vaccinated monkeys survived challenge without clinical or laboratory signs of infection, while the control animals succumbed to the infection,” says Warfield. “Based on their safety profile, immunogenicity and protective efficacy, the VLPs are a leading candidate for use as a filovirus vaccine in humans.”

Additionally, Warfield discovered that vaccination with one strain of Marburg VLP produced protection against 3 different strains of the virus, which is surprising. Subunit vaccines (in which only part of the virus is used) had previously not been thought to confer broad-based immunity.

Researchers are currently working on scaling up the production process and hope to begin clinical trials in humans in a few years.

Source: American Society for Microbiology

Explore further: Researchers develop antibodies to fight chikungunya virus

Related Stories

West African bats—no safe haven for malaria parasites

October 21, 2013

In Europe, bats are normally discussed in the context of endangered species threatened by loss of their habitats. However, in recent years, bats have caught the eye of infection biologists. The animals are namely hosts to ...

Scientists reveal how deadly Ebola virus assembles

August 15, 2013

Scientists at The Scripps Research Institute (TSRI) have discovered the molecular mechanism by which the deadly Ebola virus assembles, providing potential new drug targets. Surprisingly, the study showed that the same molecule ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.