Discovery major step forward in treating leukemia

January 18, 2008

Researchers at the University of East Anglia have discovered for the first time a pathway that makes cancerous leukaemia cells resistant to treatment.

The scientists found that death-resistant Acute Myeloid Leukaemia cells are given their resistance by a genetic anti-oxidant pathway called hemeoxygenase-1 or HO-1. This resistance pathway leads to relapse of the disease and non-responsiveness to treatments. When this pathway is inhibited, the cells lose their resistance and become responsive to death-inducing agents.

Published online in the journal Blood on Friday January 18, the discovery is the first stage in the development of new drugs that could significantly improve survival rates for leukaemia sufferers.

“This is a major step forward in the treatment of leukaemia and other cancers,” said Prof David MacEwan who led the research team.

“The next step will be a programme to develop a new set of targeted therapies to treat not only Acute Myeloid Leukaemia, but other leukaemias and other cancers.”

Leukaemia is one of the six biggest cancer killers in the UK and more people die of Acute Myeloid Leukaemia (AML) than any other form of leukaemia. AML attacks the white blood cells and is a common form in both children and adults with leukaemia. It is currently treated by a range of chemotherapy drugs. Many patients go on to have bone marrow transplants due to commonly developing drug-resistance to their initial chemotherapy.

The antioxidant response element (ARE) genes which include HO-1, protect cells from damage and their killing off by cytotoxic agents such as chemotherapy drugs. The team found that drug-resistant leukaemia cells have overactive ARE genes that cause them to be completely resistant to cytotoxic drugs, and that blocking this pathway reverts the cells into responding normally to cytotoxic agents.

Source: University of East Anglia

Explore further: How a single molecule turns one immune cell into another

Related Stories

How a single molecule turns one immune cell into another

July 30, 2015

All it takes is one molecule to reprogram an antibody-producing B cell into a scavenging macrophage. This transformation is possible, new evidence shows, because the molecule (C/EBPa, a transcription factor) "short-circuits" ...

Exploring the 'Davids and Goliaths' of therapeutic molecules

April 8, 2010

Two research units under Singapore's Agency for Science, Technology and Research (A*STAR), the Experimental Therapeutics Centre (ETC) and Singapore Immunology Network (SIgN), are collaborating with Italy's Siena Biotech S.p.A. ...

Manufacturing antibodies

March 18, 2010

New antibodies and recombinant proteins with a key signaling role in immune response to disease have been produced through collaboration between molecular immunology institutes in the Czech Republic and Germany and a private ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.