Where the brain makes sense of speech

December 19, 2007

Researchers have identified regions of the brain where speech sounds are perceived as having abstract meaning, rather than as just a stream of sensory input. They said their identification of the regions demonstrates that the understanding of speech does not just emerge from lower-level processing of speech sounds, but involves a specialized perceptual region.

Steven Small and his colleagues published their findings in the December 20, 2007, issue of the journal Neuron, published by Cell Press.

To distinguish speech perception regions, the researchers asked volunteer subjects to listen to a series of simple speech sounds while watching video of people pronouncing the sounds. During these trials, the subjects’ brains were scanned using functional magnetic resonance imaging. In this widely used brain-scanning technique, harmless magnetic fields and radio waves are used to image blood flow in brain regions, which reflects brain activity in those regions.

In the experiments, the speech sounds might either match the video representations or not. By manipulating the sequences of the various combinations of speech sounds and video of the sounds, the researchers could distinguish brain regions that were active in abstract processing of the speech sounds versus only their sensory properties.

Analyzing the results of their experiments, the researchers identified two areas of known left-hemisphere speech-processing regions—called pars opercularis and planum polare—that code speech at an abstract level.

The researchers concluded that “We have shown that there are neurophysiological substrates that code properties of an audiovisual utterance at a level of abstraction that corresponds to the speech category that is ‘heard,’ which can be independent of its sensory properties. We set out from the observation that there is no need to posit the existence of abstract coding to explain emergent features of audiovisual speech, because these features may just be the result of joint activity in lower-level unisensory regions. Yet, our results indicate that neural activity in left-hemisphere regions does indeed track the experienced speech percept, independent of its sensory properties.”

Source: Cell Press

Explore further: Why more scientists are needed in the public square

Related Stories

Why more scientists are needed in the public square

October 14, 2015

In this presidential election season, one thing is certain: candidates will rarely – if ever – be asked what they would do to keep this nation at the forefront of science and innovation.

Genes tell story of birdsong and human speech

December 11, 2014

His office is filled with all sorts of bird books, but Duke neuroscientist Erich Jarvis didn't become an expert on the avian family tree because of any particular interest in our feathered friends. Rather, it was his fascination ...

Zeroing in on the brain's speech 'receiver'

June 20, 2007

A particular resonance pattern in the brain’s auditory processing region appears to be key to its ability to discriminate speech, researchers have found. They found that the inherent rhythm of neural activity called “theta ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.