Researchers restore memory process in most common form of mental disability

Oct 05, 2007

University of California, Irvine scientists have discovered how to reverse the learning and memory problems inherent in the most common form of mental impairment.

Neurobiologist Julie Lauterborn and her colleagues identified how a mutated gene linked to fragile X syndrome blocks brain cells from locking new memories into lasting ones. The gene -- called fragile X mental retardation 1 (Fmr1) -- is turned off in people with fragile X syndrome. This genetic mutation disrupts cellular processes that are needed for memory formation.

The researchers found that by adding brain-derived neurotrophic factor (BNDF) proteins to the hippocampus region of fragile X syndrome test mice, memory-forming capacities of the brain cells were completely restored. The findings, which are reported in the Journal of Neuroscience, suggest the possibility of fragile X syndrome therapies that allow for increased learning and memory.

“While this discovery doesn’t identify a cure for fragile X syndrome, it provides the scientific foundation for methods to treat its learning and memory deficits,” Lauterborn said.

In their study, the researchers reported how the loss of a functional Fmr1 gene impaired a process called long-term potentiation (LTP) in the hippocampus region of the brain where memories are created and stored. LTP describes a chemical process that literally strengthens a synapse. Synapses are the connection points between neurons where single cells are functionally coupled to other cells.

Since memories are believed to be formed and stored within synapses, LTP is widely considered one of the major mechanisms by which the brain learns and maintains memories. This LTP impairment limits the ability of cells in the hippocampus to modify the strength of synapses, thus blocking long-term memory formation.

Earlier this year, a UC Irvine research team led by neurobiologists Gary Lynch and Christine Gall showed the first images of LTP forming memories in brain cells and how neurodegenerative diseases can obstruct the LTP process. These studies were reported in the Journal of Neuroscience.

Fragile X syndrome is the most common inherited cause of mental impairment, according to the National Fragile X Foundation. The syndrome occurs in approximately one in 3,600 males and one in 4,000 to 6,000 females. It is caused by a change or mutation in a gene on the X chromosome.

The majority of males with fragile X syndrome have a significant intellectual disability, ranging from learning disabilities to severe mental retardation, and autism. Females often have milder intellectual disabilities. There is currently no treatment that improves cognitive function in this syndrome. For more information, see: www.fragilex.org .

Source: University of California - Irvine

Explore further: Genetic testing in kids is fraught with complications

Related Stories

Polymer mold makes perfect silicon nanostructures

17 minutes ago

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

NASA image: Stellar sparklers that last

22 minutes ago

While fireworks only last a short time here on Earth, a bundle of cosmic sparklers in a nearby cluster of stars will be going off for a very long time. NGC 1333 is a star cluster populated with many young ...

Lady, you're on the money

2 minutes ago

So far, women whose portraits appear on U.S. money have been a party of three. Excluding commemorative currency, only Sacagawea, Susan B. Anthony and Helen Keller appear on coins in general circulation, according ...

The math of shark skin

34 minutes ago

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Recommended for you

Genetic testing in kids is fraught with complications

Jul 02, 2015

A woman coping with the burden of familial breast cancer can't help but wonder if her young daughter will suffer the same fate. Has she inherited the same disease-causing mutation? Is it best to be prepared ...

Cause of acute liver failure in young children discovered

Jul 02, 2015

Acute liver failure is a rare yet life-threatening disease for young children. It often occurs extremely rapidly, for example, when a child has a fever. Yet in around 50 percent of cases it is unclear as to why this happens. ...

Genome sequencing illuminates rare Aicardi syndrome

Jul 02, 2015

As my inbox fills with ever more updates on the number of human genomes sequenced and the plummeting time and cost of next next next generation sequencing, I find myself hitting delete more and more often. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.