Huntington's disease study shows animal models on target

July 31, 2007

An international team of researchers has published a benchmark study showing that gene expression in several animal models of Huntington’s Disease (HD) closely resembles that of human HD patients.

The results, published August 1, 2007, in the journal Human Molecular Genetics, validate the applicability of using animal models to study human disease and will have important consequences for the pertinence of these models in preclinical drug testing.

Huntington's disease is an incurable and fatal hereditary neurodegenerative disorder caused by a mutation in the gene that encodes the huntingtin protein. Neurons in certain regions of the brain succumb to the effects of the altered protein, leading to severe motor, psychiatric, and cognitive decline. Several recent studies have shown that the mutant huntingtin protein modifies the transcriptional activity of genes in affected neurons. This disease mechanism is a promising new avenue for research into the causes of neuronal death and a novel potential approach for treatment.

Led by EPFL professor Ruth Luthi-Carter, and involving collaborators from six countries, the current study found a marked resemblance between the molecular etiology of neurons in animal models and neurons in patients with HD. This implies that animal models are relevant for studying human HD and testing potential treatments.

To come to this conclusion, the scientists measured the gene expression profile of seven different transgenic mouse models of HD, representing different conditions and disease stages. These profiles clarified the role of different forms and dosages of the protein hungtintin in the transcriptional activity of neurons. They then designed and implemented novel computational methods for quantifying similarities between RNA profiles that would allow for comparisons between the gene expression in mice and in human patients. “Interestingly, results of different testing strategies converged to show that several available models accurately recapitulate the molecular changes observed in human HD,” explains Luthi-Carter. “It underlines the suitability of these animal models for preclinical testing of drugs that affect gene transcription in Huntington’s Disease.”

Source: Ecole Polytechnique Fédérale de Lausanne

Explore further: Unlocking the rice immune system

Related Stories

Unlocking the rice immune system

July 24, 2015

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team of researchers led by scientists with the U.S. Department of Energy ...

TOPLESS plants provide clues to human molecular interactions

July 24, 2015

Scientists at Van Andel Research Institute (VARI) have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic ...

Stress 'sweet spot' differs for mellow vs. hyper dogs

July 21, 2015

People aren't the only ones who perform better on tests or athletic events when they are just a little bit nervous—dogs do too. But in dogs as in people, the right amount of stress depends on disposition.

Review: Apple Music has everything, perhaps too much

July 16, 2015

Apple's new music service is a valiant effort to catch up in the emerging business of offering unlimited music on demand for a monthly price. It does so while acknowledging the legacy of iTunes, the world's most popular store ...

Yeast key to understanding cell division

July 16, 2015

A team of scientists has discovered that a protein in common baker's yeast helps control cell division – findings that may have implications for understanding diseases such as cancer. A protein called Yih1, for Yeast Homologue ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.