Synthesis method expands material possibilities

Addressing today's challenges will similarly require material advances. For example, how do we make solar panels that convert sunlight into electricity more efficiently? Batteries that last longer? Ever-smaller electronic devices? Scientists are seeking solutions to these very questions through and engineering. They're both improving the performance of existing materials and creating brand- with unparalleled properties.

Over the past decade, scientists at the Center for Functional Nanomaterials (CFN) at the U.S. Department of Energy (DOE)'s Brookhaven National Laboratory have established themselves as leaders in this area. In particular, they are developing a new method for making materials: infiltration synthesis.

As its name suggests, infiltration synthesis involves infiltrating, or infusing, one material into another. By infusing an inorganic (non-carbon-containing) material in an organic (carbon-containing) material, one can generate a "hybrid" material with properties not seen in either of the starting components. The organic species could be polymer thin films, polymers patterned in a particular geometrical shape using a or (a technique known as lithography), polymers self-assembled from two or more chemically distinct "blocks" (block copolymer), or even self-assembled DNA structures. Infiltration occurs as the organic matrix is exposed to inorganic-containing gas or liquid precursors (starting materials) in an alternating order.

Schematics describing the infiltration synthesis process for making new materials. Top: Generation of an organic-inorganic hybrid by infiltrating inorganic precursors (starting materials) into an organic template, such as a polymer thin film. Bottom: Area-selective infiltration into block copolymers, or polymers self-assembled from two or more chemically distinct "blocks." The inorganic precursor is only infiltrated in blue polymer domains. The organic matrix is then selectively removed to generate inorganic nanostructures inheriting the geometry of the starting polymer domain. Credit: Brookhaven National Laboratory

Scanning electron and optical microscope images of a zinc oxide nanowire array, nanowire array transistor, and nanowire array photodetector of ultraviolet (UV) light (top). The scientists combined infiltration synthesis and lithography to fabricate precisely aligned nanowire arrays and integrate them into devices. The photodetector has ultrahigh sensitivity to UV light, as shown in the graph (bottom). Credit: Advanced Optical Materials (2017)

(Left) Top- and side-view scanning electron microscope images of a ZnO nanomesh. (Right) A nanomesh device with electrodes (yellow) patterned by lithography. As shown in the graph, the device with six layers absorbed the most ultraviolet light, leading to the highest electrical currents. Credit: Nanoscale (2019)

(Top) Illustration of stacked self-assembled block copolymer thin films that have been infiltrated with platinum (Pt). The colored background image shows a Pt nanomesh obtained by removing the organic matrix; the nanomesh could be used in catalysis and chemical sensing. (Bottom) The hybrid thin films change color depending on the number of stacked layers. Credit: ACS Applied Material Interfaces (2020)

(Left) Transmission electron microscope images of cross-sections of a ZnO-infiltrated hybrid resist. (Right) Extreme ultraviolet (EUV) exposure performance of the hybrid resist and an uninfiltrated polymer. ZnO infiltration enhances EUV sensitivity (decreased critical dose) and exposure contrast (increased slope of curve). Credit: SPIE Proceedings (2021)