New mini-sensor measures magnetic field of the brain

May 29th, 2012
In future a new magnetic sensor the size of a sugar cube might simplify the measurement of brain activity. In the magnetically shielded room of Physikalisch-Technische Bundesanstalt the sensor has passed an important technical test: Spontaneous as well as stimulated magnetic fields of the brain were detected.

This demonstrates the potential of the sensor for medical applications, such as, the investigation of brain currents during cognitive processes with the aim of improving neurological diagnostics. The main advantage of the new sensor developed by NIST over the conventionally used cryoelectronics is its room temperature operation capability making complicated cooling obsolete. The results have recently been published in the journal Biomedical Optics Express.

The magnetic field sensor is called Chip-scale Atomic Magnetometer (CSAM) as it uses miniaturized optics for measuring absorption changes in a Rubidium gas cell caused by magnetic fields. The CSAM sensor was developed by NIST (National Institute of Standards and Technology), which is the national metrology institute of the USA. In this cooperation between PTB and NIST each partner contributes his own particular capabilities. PTB's staff has long standing experience in biomagnetic measurements in a unique magnetically shielded room. NIST contributes the sensors, which are the result of a decade of dedicated research and development.

Up to now the measurement of very weak magnetic fields was the domain of cryoelectronic sensors, the so called superconducting quantum interference device (SQUID). They can be considered as the „gold standard" for this application, but they have the disadvantage to operate only at very low temperatures close to absolute zero. This makes them expensive and less versatile compared to CSAMs. Even though at present CSAMs are still less sensitive compared to SQUIDs, measurements with a quality comparable to SQUIDs, but at lower costs, might eventually become reality. Due to the cooling requirements, SQUIDs have to be kept apart from the human body by a few centimeters. In contrast to that, CSAMs can be attached closely to the human body. This increases the signal amplitude as the magnetic field from currents inside the human bodydecays rapidly with increasing distance.

An important application is the measurement of the magnetic field distribution around the head, which is called magnetoencephalography (MEG). It enables the characterization of neuronal currents. Such investigations have gained importance during the last few years for neurologists and neuroscientists. Objective indicators of psychiatric disorders as well as age dependent brain diseases, are urgently needed for the support of today's clinical diagnostics.

Already in 2010 scientists from NIST and PTB had successfully tested the performance of an earlier version of the present CSAM by measurements of the magnetic field of the human heart. For the present study the sensor was positioned about 4 mm away from the head of healthy subjects. At the back of the head, the magnetic fields of alpha waves were detected, a basic brain rhythm which occurs spontaneously during relaxation. In another measurement the brain fields due to the processing of tactile stimuli were identified. These fields are extremely weak and the CSAM result was validated by a simultaneous MEG measurement relying on the established SQUID technology. if/ptb

More information:
T. Sander-Thömmes, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe: Magnetoencephalography with a Chip-Scale Atomic Magnetometer. Biomedical Optics Express Vol. 3 Issue 5, pp.981-990 (2012) www.opticsinfobase.org/boe/issue.cfm?volume=3&issue=5

PTB-NIST-Experiment of 2010: S. Knappe, T.H. Sander, O. Kosch, F. Wiekhorst, J. Kitching and L. Trahms. Cross-validation of microfabricated atomic magnetometers with SQUIDs for biomagnetic applications. Applied Physics Letters. 97, 133703 (2010); doi:10.1063/1.3491548. Online publication: Sept. 28, 2010.

Provided by Physikalisch-Technische Bundesanstalt (PTB)

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

A homemade solar lamp for developing countries

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...