How bugs avoid getting sick after sex

Aug 18, 2006
Salmonella
Salmonella causes food poisoning and kills around 1 million people worldwide every year.

Scientists at the Institute of Food Research in Norwich revealed today how the promiscuous Salmonella bacterium protects itself from getting ill after acquiring foreign DNA through "sex" with other bacteria. This discovery could lead to the design of new antibiotics to fight this killer disease.

Salmonella causes food poisoning and kills around 1 million people worldwide every year; it is becoming more difficult to treat with drugs because it quickly evolves resistance to antibiotics by swapping genes with other bugs during "bacterial sex". These foreign genes help the bacterium because they make it infectious and resistant to antibiotics.

Professor Jay Hinton's group at the Institute of Food Research in collaboration with Oxford Gene Technology, have discovered that a protein called H-NS switches off these incoming genes until they need to be activated - a process called gene silencing. This BBSRC-funded study, published today in the respected online journal PLoS Pathogens shows that without proper control the incoming genes make proteins that are toxic for the bacterium. Without H-NS, the bacterium has problems growing and can't function properly. H-NS allows the bacteria to evolve by determining how new pieces of DNA are used in Salmonella.

"We may have found the Achilles' Heel for Salmonella bacteria because they need this H-NS protein to acquire new skills and become infectious" says Jay Hinton, "Salmonella still kills a huge number of people. Discoveries like this will help us find new ways of attacking these dangerous bacteria; if we can inactivate H-NS, we could discover urgently-needed new antibiotics."

Hinton's team found that H-NS works by coating stretches of the foreign DNA, which can be distinguished from Salmonella DNA because it contains a higher amount of the molecules adenine and thymine (A and T). H-NS binding stops foreign genes producing protein unnecessarily. Once the bacterium has invaded a human, the effect of H-NS is blocked and the genes can be switched on.

"Gene silencing is well known in plants and animals, but has never been seen before in bacteria" Jay Hinton adds, "It looks like H-NS has helped Salmonella to evolve to infect humans over the last 10 million years."

The researchers hope that this discovery could lead to a new strategy in the fight against drug-resistant "superbugs".

Source: Institute of Food Research

Explore further: Hand dryers can spread bacteria in public toilets, research finds

add to favorites email to friend print save as pdf

Related Stories

Microsoft rolls out Skype for web browsers

4 hours ago

Microsoft on Friday released a test version of Skype that lets people make Internet calls from web browsers, eliminating the need to install special applications.

A kingdom of cave beetles found in Southern China

7 hours ago

A team of scientists specializing in cave biodiversity from the South China Agricultural University (Guangzhou) unearthed a treasure trove of rare blind cave beetles. The description of seven new species ...

Recommended for you

Brain-dwelling worm in UK man's head sequenced

3 hours ago

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

US seniors' health poorest, global survey shows

5 hours ago

(HealthDay)— Seniors in America have more chronic health problems and take more medications than seniors in 10 other industrialized countries do, according to a new global survey. The United States also ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.