How bugs avoid getting sick after sex

Aug 18, 2006
Salmonella
Salmonella causes food poisoning and kills around 1 million people worldwide every year.

Scientists at the Institute of Food Research in Norwich revealed today how the promiscuous Salmonella bacterium protects itself from getting ill after acquiring foreign DNA through "sex" with other bacteria. This discovery could lead to the design of new antibiotics to fight this killer disease.

Salmonella causes food poisoning and kills around 1 million people worldwide every year; it is becoming more difficult to treat with drugs because it quickly evolves resistance to antibiotics by swapping genes with other bugs during "bacterial sex". These foreign genes help the bacterium because they make it infectious and resistant to antibiotics.

Professor Jay Hinton's group at the Institute of Food Research in collaboration with Oxford Gene Technology, have discovered that a protein called H-NS switches off these incoming genes until they need to be activated - a process called gene silencing. This BBSRC-funded study, published today in the respected online journal PLoS Pathogens shows that without proper control the incoming genes make proteins that are toxic for the bacterium. Without H-NS, the bacterium has problems growing and can't function properly. H-NS allows the bacteria to evolve by determining how new pieces of DNA are used in Salmonella.

"We may have found the Achilles' Heel for Salmonella bacteria because they need this H-NS protein to acquire new skills and become infectious" says Jay Hinton, "Salmonella still kills a huge number of people. Discoveries like this will help us find new ways of attacking these dangerous bacteria; if we can inactivate H-NS, we could discover urgently-needed new antibiotics."

Hinton's team found that H-NS works by coating stretches of the foreign DNA, which can be distinguished from Salmonella DNA because it contains a higher amount of the molecules adenine and thymine (A and T). H-NS binding stops foreign genes producing protein unnecessarily. Once the bacterium has invaded a human, the effect of H-NS is blocked and the genes can be switched on.

"Gene silencing is well known in plants and animals, but has never been seen before in bacteria" Jay Hinton adds, "It looks like H-NS has helped Salmonella to evolve to infect humans over the last 10 million years."

The researchers hope that this discovery could lead to a new strategy in the fight against drug-resistant "superbugs".

Source: Institute of Food Research

Explore further: Hip fracture patients in long-term care are less likely to receive osteoporosis therapy

add to favorites email to friend print save as pdf

Related Stories

Dairy farms asked to consider breeding no-horn cows

7 hours ago

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

DARPA seeks new positioning, navigation, timing solutions

13 hours ago

The Defense Advanced Research Projects Agency (DARPA), writing about GPS, said: "The military relies heavily on the Global Positioning System (GPS) for positioning, navigation, and timing (PNT), but GPS access is easily blocked by methods such as jamming. In addition, many environments in which our mil ...

Recommended for you

Third Minnesota turkey farm hit by bird flu outbreak

18 hours ago

An outbreak of a bird flu strain that's deadly to poultry deepened Saturday when state and federal officials confirmed a third Minnesota turkey farm has been infected, this time in one of the state's top poultry producing ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.