Researchers produce images of AIDS virus that may shape vaccine

May 29, 2006
AIDS Virus
Envelope Spikes on Surface of HIV-1 virus. Credit: Courtesy of Kenneth Roux

As the world marks the 25th year since the first diagnosed case of AIDS, groundbreaking research by scientists at Florida State University has produced remarkable three-dimensional images of the virus and the protein spikes on its surface that allow it to bind and fuse with human immune cells.

Findings from this AIDS research could boost the development of vaccines that will thwart infection by targeting and crippling the sticky HIV-1 spike proteins. In fact, said principal investigator and FSU Professor Kenneth H. Roux, at least two laboratories already are crafting vaccine candidates based on preliminary results uncovered by his team of structural biologists.

Those results are described in the online edition of the journal Nature.

Never before generated in such intricate detail, the super-sized images of the virus and its viral spikes have given researchers their first good look at the pathogen's complex molecular surface architecture that facilitates the infection process.

"Until now, despite intensive study by many laboratories, the design details of the spikes and their distribution pattern on the surface of the virus membrane have been poorly understood, which has limited our understanding of how the virus infection actually occurs and frustrated efforts to create vaccines," Roux said.

To produce the images, research associate Ping Zhu, Roux, and their colleagues used a state-of-the art technique called cryoelectron microscopy tomography. It generates three-dimensional images similar to those from a CAT scan, but at the level of viruses and molecules rather than tissues and organs.

They imaged HIV samples as well as a mutant SIV (non-human primate) strain, genetically engineered for the study by collaborators at the National Cancer Institute to express about 74 spikes as opposed to the 14 found on the HIV virus –- more spikes make it easier to work with. The virus samples were suspended in a thin liquid film stretched across the holes of a small copper grid and then flash-frozen, creating a solid form of ice that is more like clear glass than the typical crystalline form in ice cubes.

Once inside the electron microscope, electrons bombarded the samples from myriad angles, magnifying it more than 43,000 times to reveal its surprising structure –- absent the degree of distortion caused by the more typical imaging methods involving drying and staining of specimens.

As a result, the researchers were able to hone in on the envelope –- the lipid membrane covering the virus itself. They imaged the spikes protruding from the envelope, which contain the only viral protein molecules on the HIV surface. The FSU scientists also were able to capture super-sized images of both the head of the spike and its supporting stalk. The spike head is responsible for binding the virus to the target cell. Its stalk is responsible for the fusion event in which HIV injects its genes into the human host cells for which the virus has a natural affinity –- T lymphocytes and macrophages.

"Antibodies that effectively bind to either of these spike parts will neutralize the virus to prevent infection," said Roux, a member of FSU's biological science faculty since 1978.

His biggest surprise: the stalk has legs.

"Researchers thought the spike stalk was comprised of a tight collection of three rods bound together with the head of the spike perched on top. But our images reveal that the stalk is split into three legs, spread more like a tripod, which increases their contact with the viral membrane," Roux said. "Seeing the tripod stalk suggests a novel mechanism by which HIV-1 is able to so effectively fuse with our cells. That essential knowledge should help us design better weapons to fight the virus."

FSU Arts and Sciences Dean Joseph Travis has declared the work "a beautiful example of what happens when strong, sound basic science is applied to a very difficult problem."

The National Institutes of Health funded the two-year study, conducted by members of the department of biological science and the Institute of Molecular Biophysics at FSU.

AIDS has produced one of the worst pandemics ever known. About 25 million people have died and 40 million are infected worldwide –- including 1 million in the United States.

Source: Florida State University, by Libby Fairhurst

Explore further: Ebola reveals shortcomings of African solidarity

add to favorites email to friend print save as pdf

Related Stories

The year ahead in science

Jan 05, 2015

Some serious groundwork has been laid. Some amazing instruments are turning on. Some incredible destinations are in sight. If you ask us, 2015 is going to be an awesome year in science.

Chasing a common cold virus

Oct 22, 2012

(Phys.org)—As the cold and flu season makes its annual visit, a team of researchers, using Argonne's Advanced Photon Source, continue to complete a detailed map of the human adenovirus—one of several ...

Recommended for you

Ebola reveals shortcomings of African solidarity

4 hours ago

As Africa's leaders meet in Ethiopia to discuss the Ebola crisis, expectations of firm action will be tempered by criticism over the continent's poor record in the early stages of the epidemic.

Second bird flu case confirmed in Canada

20 hours ago

The husband of a Canadian who was diagnosed earlier this week with bird flu after returning from a trip to China has also tested positive for the virus, health officials said Friday.

Jamaica Senate starts debate on pot decriminalization bill

21 hours ago

Jamaica's Senate on Friday started debating a bill that would decriminalize possession of small amounts of pot and establish a licensing agency to regulate a lawful medical marijuana industry on the island where the drug ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.