DNA Repair in Mammal Embryos Is a Matter of Timing

Jun 19, 2006

Investigators at St. Jude Children's Research Hospital have discovered that the cells of the developing nervous system of the mammalian embryo have an exquisite sense of timing when it comes to fixing broken chromosomes: the cells use one type of repair mechanism during the first half of development and another during the second half.

The team also showed that blocking a repair pathway causes the cell to commit suicide, a process called apoptosis; and that preventing this attempt at apoptosis keeps the damaged cell alive and able to become cancerous. Moreover, the type of cancer that develops depends on which repair pathway was originally disrupted.

These findings reflect the meticulous timing of an important aspect of embryo development and help to explain the origin of a variety of cancers from muscle tumors to brain tumors, researchers said. A report on these results appears in the online prepublication issue of Proceedings of the National Academy of Science.

Specifically, the St. Jude researchers showed that the DNA repair pathway called homologous recombination (HR) works primarily during the first half of embryo development, when many cells are dividing inside the growing body. In contrast, the pathway called non-homologous end joining (NHEJ) becomes an important repair mechanism midway through development, when cells begin to assume their final form and take on specific roles.

HR and NHEJ repair a type of DNA damage called a double-strand break (DSB), which cuts completely through the DNA. DNA exists as two individual strands that associate to form its double-stranded, twisted-ladder—shaped structure.

The researchers also discovered that a protein called ATM is required for apoptosis that is triggered by blocking NHEJ. However, apoptosis triggered by blocking HR does not require this protein. ATM is a critical DNA damage-signaling factor that is required to prevent a severe human neurodegenerative syndrome called ataxia telangiectasia. This new work points to the specific DNA repair pathway that ATM is required to monitor in order to prevent neurodegeneration.

The HR pathway fixes a broken chromosome by using that chromosome’s exact “twin” as a blueprint to guide the repair job, according to Peter McKinnon, Ph.D., an associate member of Genetics and Tumor Cell Biology at St. Jude and senior author of the PNAS paper. However, such twins only exist in cells that are preparing to divide into two new cells, a process called mitosis, he noted. Then, as the cell starts to divide, each member of the sister chromatid pair moves into a different new cell.

Because HR is active only during the first half of embryo development, it is the critical repair pathway for the rapidly multiplying precursor and stem cells—cells that populate the body during early development with “daughter” cells—that later take on specific roles, according to researchers.

“Therefore, if HR-related apoptosis is blocked during the early part of embryo development, precursor and stem cells are affected. And since those cells give rise to many different types of cells and tissues, many different types of cancers can arise, such as skin cancer and sarcomas (cancers of bone, cartilage, fat, muscle or blood vessels),” McKinnon said.

But as cells acquire specialized structures and functions, they stop dividing and no longer produce sister chromatids. “When cells begin assuming specific roles in the brain, they stow away most of their chromosomes into tightly wrapped strings of DNA and use only those genes required to survive and allow them to perform these roles,” McKinnon explained. “In the absence of sister chromatids to use as blueprints, the NHEJ repair pathway uses various chemical means to join the broken ends of DNA strands.”

Since the cell uses NHEJ only when many cells are becoming specialized, cancers that arise in the absence of this pathway are more specific, such as cancer of a type of cell that produces only immune cells called B lymphocytes. The wide variety of cancers that can form represents the fact that HR and NHEJ are important throughout the developing body, and not just in the developing nervous system.

An intriguing exception to the timing of HR and NHEJ during nervous system development is the development of medulloblastoma, a tumor in children that arises in the lower part of the brain called the cerebellum, McKinnon said. The infant cerebellum is still undergoing both rapid growth in the number of cells as well as specialization of many cells, he noted. “That means this part of the brain uses both HR and NHEJ to repair broken chromosomes, so disruption of either mechanism can cause cancer in this area of the brain.”

The St. Jude team studied the roles of the two repair pathways using mice that lacked either the gene Xrcc2, which is critical for the HR pathway, or Lig4, which is critical for the NHEJ pathway.

Other authors of the report include Kenji E. Orii and Youngsoo Lee (St. Jude) and Naomi Kondo (Gifu University School of Medicine, Japan).

Source: St. Jude Children's Research Hospital

Explore further: MERS cases keep coming from Samsung hospital

Related Stories

Forks colliding: How DNA breaks during re-replication

Jun 04, 2015

Leveraging a novel system designed to examine the double-strand DNA breaks that occur as a consequence of gene amplification during DNA replication, Whitehead Institute scientists are bringing new clarity ...

Scientists identify protein profiles of DNA repair

May 04, 2015

During each cell division, more than 3.3 billion base pairs of genomic DNA have to be duplicated and segregated accurately to daughter cells. But what happens when the DNA template is damaged in such a way ...

Understanding how cells follow electric fields

May 28, 2015

Many living things can respond to electric fields, either moving or using them to detect prey or enemies. Weak electric fields may be important growth and development, and in wound healing: it's known that ...

Recommended for you

Noise from fireworks threatens young ears

17 hours ago

(HealthDay)—The Fourth of July weekend is a time for celebrations and beautiful fireworks displays. But, parents do need to take steps to protect their children's ears from loud fireworks, a hearing expert ...

Many new teen drivers 'crash' in simulated driving task

17 hours ago

(HealthDay)—Around four in 10 newly licensed teen drivers "crashed" in a simulated driving test, suggesting that many adolescents lack the skills they need to stay safe on the road, according to a new study.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.