Jefferson receives $2.6M NIH grant to study noninvasive imaging method to stage prostate cancer

May 16th, 2012
Mathew Thakur, Ph.D., of the department of radiology at Thomas Jefferson University, and colleagues received a five-year, $2.6 million grant from the National Institutes of Health (NIH) to investigate a potentially revolutionary method that can stage prostate cancers and detect recurrent disease so accurately, it would significantly reduce the number of confirmation biopsies. Credit: TJU
Jefferson's Kimmel Cancer Center and the Department of Radiology at Thomas Jefferson University received a five-year, $2.6 million grant from the National Institutes of Health (NIH) to investigate a potentially revolutionary method that can stage prostate cancers and detect recurrent disease so accurately, it would significantly reduce the number of confirmation biopsies. Such biopsies can be invasive, costly, and often lead to false-positive readings.

The new technique involves the use of a positron emission tomography (PET) scan and a novel imaging agent.

The study is being led by Mathew Thakur, PhD, professor of Radiology at Jefferson Medical College of Thomas Jefferson University and the Director of the Laboratories of Radiopharmaceutical Research and Molecular Imaging.

Prostate specific antigen (PSA) measurements, ultrasonography and magnetic resonance imaging (MRI) remain standard tools for diagnosis and management of prostate cancer; however, each requires an invasive biopsy for histologic confirmation.

Biopsies are associated with morbidity and high costs, and more than 65 percent of the 1.5 million biopsies performed each year in the U.S. show benign pathology, indicating a high false-positive rate for these standard diagnostic tools.

These limitations, the researchers say, demonstrate a dire need for noninvasive methods that can accurately stage prostate cancer, detect recurrent disease and image metastatic lesions with improved reliability.

Dr. Thakur and colleagues are studying Cu-64 peptide biomolecules to evaluate prostate cancer tumors via PET imaging. These agents detect prostate cancer by finding a biomarker called VPAC1, which is overexpressed as the tumor develops.

"The challenge has been to develop an imaging agent that will target a specific, fingerprint biomarker that visualizes prostate cancer early and reliably," said Dr. Thakur, who is also a member of Jefferson's Kimmel Cancer Center.

Previous studies with Cu-64 peptides from Dr. Thakur yielded promising results in stratifying breast cancer. A preclinical study published in the Journal of Nuclear Medicine in late 2009 found that 64Cu-TP3805 detected tumors overexpressing the VPAC1 oncogene more accurately in mice than 18F-FDG, a commonly used agent for imaging tumors.

With this NIH grant, the researchers will test the hypothesis in both mice and humans. They will evaluate two Cu-64 peptides specific for VPAC1 in mice and perform a feasibility study in 25 pre-operative prostate cancer patients, using the best suited Cu-64 peptide determined from the mouse studies.

"This noninvasive method could significantly contribute to the management of prostate cancer," said Dr. Thakur. "It would result in a reduction of unnecessary biopsy procedures and under treatment or over treatment that yield minimal benefits, incontinence, or impotence."

Provided by Thomas Jefferson University

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

Scientists solve puzzle of turning graphite into diamond

(Phys.org)—Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the ...

New gene for atrazine resistance identified in waterhemp

Waterhemp has been locked in an arms race with farmers for decades. Nearly every time farmers attack the weed with a new herbicide, waterhemp becomes resistant to it, reducing or eliminating the efficacy of the chemical. ...

Vast luminous nebula poses a cosmic mystery

Astronomers have found an enormous, glowing blob of gas in the distant universe, with no obvious source of power for the light it is emitting. Called an "enormous Lyman-alpha nebula" (ELAN), it is the brightest and among ...

Ball-rolling bees reveal complex learning

Bumblebees can be trained to score goals using a mini-ball, revealing unprecedented learning abilities, according to scientists at Queen Mary University of London (QMUL).

Neanderthal DNA contributes to human gene expression

The last Neanderthal died 40,000 years ago, but much of their genome lives on, in bits and pieces, through modern humans. The impact of Neanderthals' genetic contribution has been uncertain: Do these snippets affect our genome's ...