Team aims to more accurately predict physical behavior of newly designed robots

November 21st, 2011
Researchers from Texas A&M University, Rice University and Halmstad University in Sweden are collaborating to develop a new generation of design software that can accurately predict the physical behavior of robots prior to prototyping.

"One of our goals is to find a way to do virtual testing so that key flaws can be found on a computer before a prototype is ever built," said Walid Taha, adjunct professor of computer science at Rice University and professor of computer science at Halmstad University.

Taha is principal investigator at Rice and Halmstad University on a new collaborative research grant from the National Science Foundation (NSF).  The lead investigator at Texas A&M is Dr. Aaron Ames, an assistant professor in the Department of Mechanical Engineering with a joint appointment in the Department of Electrical and Computer Engineering.

Taha said that robots are a study in contrasts. They can perform superhuman feats and get tripped up by toddler-level tasks. They're digitally programmable, but intricacies of their physical behavior go far beyond the reach of computer simulations.

"Part of the problem is that robots have a foot in both the digital and physical worlds," said robotics researcher Marcia O'Malley, professor of mechanical engineering and materials science at Rice and co-principal investigator on the new project. "Bridging these worlds is difficult. The physical world is a messy place with both smooth curves and discontinuities that are difficult for computers to deal with."

The upshot is that designing robots today goes something like this: Build computational models and test in simulation. Build prototype at great expense. Test prototype and find unanticipated flaw. Revisit simulation. Redesign prototype. Repeat.

Taha, Ames and their collaborators at Rice said they hope to change that with new funding from the NSF's Cyber-Physical Systems program.

Modeling and simulation of robotics is not a new idea, but the researchers are taking a new approach. For one thing, they are keen to develop a holistic system that robotics designers can use from start to finish. Currently, designers might use four or more different pieces of software at various points in the design and testing of a new robot. Lack of compatibility from one piece of software to the next is one problem, but an even larger problem can arise when entire concepts are missing or treated wholly different.

To address this, the team includes Rice programming language expert Corky Cartwright, professor of computer science. Taha, principal investigator on the project, and Cartwright began developing a new programming language called Acumen under an earlier NSF grant. They'll continue to develop and expand the language under the new research program.

This new programming language will be applied in the context of the project's two hands-on robotics laboratories — O'Malley's Mechatronics and Haptics Interface (MAHI) lab at Rice and Ames' A&M Bipedal Experimental Robotics (AMBER) lab at Texas A&M — to test the language and make sure it is up to the task of day-to-day robotic design. O’Malley will create novel upper-body prosthetic and rehabilitation devices through this framework. Ames will focus on lower body robotic devices, developing the next generation of two-legged walking robots and lower-limb robotic assistive devices through this new software infrastructure.

Ames said, "One area that stands to significantly benefit from these innovations is the design of next-generation prosthetics. The MAHI lab at Rice is already doing work on upper-body prosthetics, and the AMBER lab is working on prosthetics for the lower body. With improved modeling and simulation tools we hope to dramatically accelerate innovation in this area."

Ames joined the Texas A&M Engineering faculty in 2008 after a postodoctoral fellowship at Caltech. His research interests center around theoretic methods in nonlinear dynamical, control and hybrid systems, with a special emphasis on human-inspired applications of geometric and topological techniques to robotic systems — and specifically bipedal robotic walkers. His AMBER lab is devoted to both theoretical and experimental research in bipedal robotics, human locomotion, and prosthetic design.

Ames received the 2010 NSF CAREER Award for his project, "Closing the Loop on Walking: From Hybrid Systems, to Bipedal Robots to Prosthetic Devices and Back." He earned a B.S. in mechanical engineering and a B.A. in mathematics from the University of St. Thomas in 2001. He also received an M.A. in mathematics and a Ph.D. in electrical engineering and computer sciences from the University of California, Berkeley in 2006.

Provided by Texas A&M University

This Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

Cities and monuments switch off for Earth Hour

The Empire State Building and United Nations headquarters in New York joined other iconic buildings and monuments around the world plunging into darkness for sixty minutes on Saturday to mark Earth Hour and draw attention ...

Study into who is least afraid of death

A new study examines all robust, available data on how fearful we are of what happens once we shuffle off this mortal coil. They find that atheists are among those least afraid of dying... and, perhaps not surprisingly, ...

Astronomers identify purest, most massive brown dwarf

An international team of astronomers has identified a record breaking brown dwarf (a star too small for nuclear fusion) with the 'purest' composition and the highest mass yet known. The object, known as SDSS J0104+1535, is ...

Controlling ice formation

(—Researchers have demonstrated that ice crystals will grow along straight lines in a controlled way on microgrooved surfaces. Compared to the random formation of ice crystals on smooth surfaces, the ice on the ...

Inventing a new kind of matter

Imagine a liquid that could move on its own. No need for human effort or the pull of gravity. You could put it in a container flat on a table, not touch it in any way, and it would still flow.

In a quantum race everyone is both a winner and a loser

Our understanding of the world is mostly built on basic perceptions, such as that events follow each other in a well-defined order. Such definite orders are required in the macroscopic world, for which the laws of classical ...