Dead in the Water: Utah State Spider Silk Lab Awarded Navy Grant Aimed at Maritime Defense

June 1st, 2018
Dead in the Water: Utah State Spider Silk Lab Awarded Navy Grant Aimed at Maritime Defense
Diagram depicting a boat propeller disabled by a next-generation, environmentally friendly, nonlethal Maritime Vessel Stopping Occlusion Technologies or ‘MVSOT’ device crafted from synthetic slime and Utah State University-made synthetic spider silk. Credit: NAVSEA
by Mary-Ann Muffoletto

Envisioning a device the U.S. Navy is developing with Utah State University synthetic spider silk conjures images you'd expect in a James Bond thriller. Think strong, stretchy fibers wrapping relentlessly around a boat propeller and effectively foiling nefarious efforts by smugglers, pirates or terrorists.

That's what nonlethal Maritime Vessel Stopping Occlusion Technologies or 'MVSOT,' the official name for these types of devices, are intended to do.

USU's Utah Science, Technology and Research (USTAR) initiative-funded Synthetic Spider Silk Lab is the recipient of a $420,000 grant from the U.S. Navy Division of Unconventional Warfare aimed at designing and developing these devices, as well as applying USU silk manufacturing technology to enable commercial-scale production of other biomaterials.

Kevlar was the initial material used in MVSOT technologies, followed by superabsorbent polymers, leading to the current "polymer kelp" design. The Navy envisions stronger, more effective and environmentally friendly next-generation designs with spider silk and synthetic 'slime' derived from other proteins. MVSOT is currently deployed with pneumatic launchers. Future designs may use unmanned surface vessels or aerial drones.

"This project has three major aims that will benefit the Navy and advance our research," says Randy Lewis, professor in USU's Department of Biology and lab director.

First is supplying the aforementioned synthetic spider silk made from transgenic bacteria and silkworms, two of four sources the Lewis Lab uses for silk production.

A second aim of the project, Lewis says, is sharing expertise with the Navy on how to produce synthetic slime from hagfish proteins. As a defense from predators, hagfish, eel-like marine creatures, secrete a gooey, microfibrous mucin that greatly expands in seawater.

The third piece of the project is sharing USU expertise on how to scale-up production of hagfish-derived proteins to manufacture commercial-level quantities of the materials, as well as commercial-scale spinning of fibers.

Dead in the Water: Utah State Spider Silk Lab Awarded Navy Grant Aimed at Maritime Defense
Utah State University USTAR Biology Professor Randy Lewis at a spinning machine in his lab in Logan, Utah. With the U.S. Navy, Lewis is developing next-generation maritime vessel stopping occlusion technologies with Utah State-made synthetic spider silk and sharing USU silk manufacturing technology to enable commercial-scale production of other biomaterials. Credit: Mary-Ann Muffoletto
"This is a great opportunity for USU, because this project will allow us to continue to develop our knowledge of synthetic silk production and applications," Lewis says. "It also provides research opportunities for three research scientists, two graduate students and a number of undergraduate researchers."

The grant is for one year, with opportunities for follow-on funding.

Lewis has received previous Navy grants, totaling more than $1 million, to develop waterproof fasteners and adhesives from synthetic spider silk.

"Certain types of spider silk have chemical and physical properties that enable them to attach to virtually any surface – even when wet," he says. "In addition, the silk is flexible, lightweight and very strong."

In addition to bacteria and silkworms, the Lewis Lab uses the milk from transgenic goats and fibers from transgenic alfalfa to produce synthetic silk.

"Spider silk has properties unmatched by any manmade material," Lewis says. "Synthetic silk holds promise for nearly endless applications in industry, medicine and consumer products."

The scientist, who joined USU in 2011, adds he's grateful to USTAR – the state-funded Utah Science and Technology and Research economic development initiative – for providing funding for his research.

"Support from the State of Utah has enabled us to advance this research, secure federal and private funding and provide world-class research opportunities for our students," Lewis says.

More information:
Contacts:
Randy Lewis, 435-797-9291, randy.lewis@usu.edu
Michelle Kincer, Naval Surface Warfare Center, michelle.r.kincer@navy.mil

Writer: Mary-Ann Muffoletto, 435-797-3517, maryann.muffoletto@usu.edu

Provided by Utah State University

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

Team names world's largest ever bird—Vorombe titan

After decades of conflicting evidence and numerous publications, scientists at international conservation charity ZSL's (Zoological Society of London) Institute of Zoology, have finally put the 'world's largest bird' debate ...

Impact of WWII bombing raids felt at edge of space

Bombing raids by Allied forces during the Second World War not only caused devastation on the ground but also sent shockwaves through Earth's atmosphere which were detected at the edge of space, according to new research. ...

Climate change not main driver of amphibian decline

While a warming climate in recent decades may be a factor in the waning of some local populations of frogs, toads, newts and salamanders, it cannot explain the overall steep decline of amphibians, according to researchers.

The grim, final days of a mother octopus

Octopuses are the undisputed darlings of the science internet, and for good reason. They're incredibly intelligent problem-solvers and devious escape artists with large, complex nervous systems. They have near-magical abilities ...