First on-chip nanoscale optical quantum memory developed

September 11th, 2017
Artist's representation of the quantum memory device. Credit: Ella Maru Studio
For the first time, an international team led by engineers at Caltech has developed a computer chip with nanoscale optical quantum memory.

Quantum memory stores information in a similar fashion to the way traditional computer memory does, but on individual quantum particles—in this case, photons of light. This allows it to take advantage of the peculiar features of quantum mechanics (such as superposition, in which a quantum element can exist in two distinct states simultaneously) to store data more efficiently and securely.

"Such a device is an essential component for the future development of optical quantum networks that could be used to transmit quantum information," says Andrei Faraon (BS '04), assistant professor of applied physics and materials science in the Division of Engineering and Applied Science at Caltech, and the corresponding author of a paper describing the new chip.

The study appeared online ahead of publication by Science magazine on August 31.

"This technology not only leads to extreme miniaturization of quantum memory devices, it also enables better control of the interactions between individual photons and atoms," says Tian Zhong, lead author of the study and a Caltech postdoctoral scholar. Zhong is also an acting assistant professor of molecular engineering at the University of Chicago, where he will set up a laboratory to develop quantum photonic technologies in March 2018.

The use of individual photons to store and transmit data has long been a goal of engineers and physicists because of their potential to carry information reliably and securely. Because photons lack charge and mass, they can be transmitted across a fiber optic network with minimal interactions with other particles.

The new quantum memory chip is analogous to a traditional memory chip in a computer. Both store information in a binary code. With traditional memory, information is stored by flipping billions of tiny electronic switches either on or off, representing either a 1 or a 0. That 1 or 0 is known as a bit. By contrast, quantum memory stores information via the quantum properties of individual elementary particles (in this case, a light particle). A fundamental characteristic of those quantum properties—which include polarization and orbital angular momentum—is that they can exist in multiple states at the same time. This means that a quantum bit (known as a qubit) can represent a 1 and a 0 at the same time.

To store photons, Faraon's team created memory modules using optical cavities made from crystals doped with rare-earth ions. Each memory module is like a miniature racetrack, measuring just 700 nanometers wide by 15 microns long—on the scale of a red blood cell. Each module was cooled to about 0.5 Kelvin—just above Absolute Zero (0 Kelvin, or -273.15 Celsius)—and then a heavily filtered laser pumped single photons into the modules. Each photon was absorbed efficiently by the rare-earth ions with the help of the cavity.

The photons were released 75 nanoseconds later, and checked to see whether they had faithfully retained the information recorded on them. Ninety-seven percent of the time, they had, Faraon says.

Next, the team plans to extend the time that the memory can store information, as well as its efficiency. To create a viable quantum network that sends information over hundreds of kilometers, the memory will need to accurately store data for at least one millisecond. The team also plans to work on ways to integrate the quantum memory into more complex circuits, taking the first steps toward deploying this technology in quantum networks.

More information:
https://phys.org/news/2017-09-high-speed-quantum-memory-photons.html

Provided by California Institute of Technology

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

A world of parasites

Alex Betts, Craig MacLean and Kayla King from the Department of Zoology, shed light on their recent research published in Science, which addressed the impact that parasite communities have on evolutionary change and diversity.

Why bioelectrodes for energy conversion are not stable

Researchers at the Ruhr-Universität Bochum have discovered why bioelectrodes containing the photosynthesis protein complex photosystem I are not stable in the long term. Such electrodes could be useful for converting light ...

Long live the doubly charmed particle

Finding a new particle is always a nice surprise, but measuring its characteristics is another story and just as important. Less than a year after announcing the discovery of the particle going by the snappy name of Ξcc++ (Xicc++), ...

Simulations show how beta-amyloid may kill neural cells

Beta-amyloid peptides, protein fragments that form naturally in the brain and clump into plaques in Alzheimer's disease patients, are thought to be responsible for neuron death, but it hasn't been clear how the substances ...

A better B1 building block

Humans aren't the only earth-bound organisms that need to take their vitamins. Thiamine – commonly known as vitamin B1 – is vital to the survival of most every living thing on earth. But the average bacterium or plant ...