Surface matters: Huge reduction of heat conduction observed in flat silicon channels

April 22nd, 2015
Figure 1: The different circles represent the studied surfaces of the Si membranes: crystalline, rough, flat with native SiO2, and rough with native SiO2. The right image shows a representative thermal map on the membranes upon a localized thermal excitation used to measure the thermal conductivity.
The ability of materials to conduct heat is a concept that we are all familiar with from everyday life. The modern story of thermal transport dates back to 1822 when the brilliant French physicist Jean-Baptiste Joseph Fourier published his book "Théorie analytique de la chaleur" (The Analytic Theory of Heat), which became a corner stone of heat transport. He pointed out that the thermal conductivity, i.e., ratio of the heat flux to the temperature gradient is an intrinsic property of the material itself.

The advent of nanotechnology, where the rules of classical physics gradually fail as the dimensions shrink, is challenging Fourier's theory of heat in several ways. A paper published in ACS Nano and led by researchers from the Max Planck Institute for Polymer Research (Germany), the Catalan Institute of Nanoscience and Nanotechnology (ICN2) at the campus of the Universitat Autònoma de Barcelona (UAB) (Spain) and the VTT Technical Research Centre of Finland (Finland) describes how the nanometre-scale topology and the chemical composition of the surface control the thermal conductivity of ultrathin silicon membranes. The work was funded by the European Project Membrane-based phonon engineering for energy harvesting (MERGING).

The results show that the thermal conductivity of silicon membranes thinner than 10 nm is 25 times lower than that of bulk crystalline silicon and is controlled to a large extent by the structure and the chemical composition of their surface. Combining state-of-the-art realistic atomistic modelling, sophisticated fabrication techniques, new measurement approaches and state-of-the-art parameter-free modelling, researchers unravelled the role of surface oxidation in determining the scattering of quantized lattice vibrations (phonons), which are the main heat carriers in silicon.

Both experiments and modelling showed that removing the native oxide improves the thermal conductivity of silicon nanostructures by almost a factor of two, while successive partial re-oxidation lowers it again. Large-scale molecular dynamics simulations with up to 1,000,000 atoms allowed the researchers to quantify the relative contributions to the reduction of the thermal conductivity arising from the presence of native SiO[sub]2 [/sub]and from the dimensionality reduction evaluated for a model with perfectly specular surfaces.

Silicon is the material of choice for almost all electronic-related applications, where characteristic dimensions below 10 nm have been reached, e.g. in FinFET transistors, and heat dissipation control becomes essential for their optimum performance. While the lowering of thermal conductivity induced by oxide layers is detrimental to heat spread in nanoelectronic devices, it will turn useful for thermoelectric energy harvesting, where efficiency relies on avoiding heat exchange across the active part of the device.

The chemical nature of surfaces, therefore, emerges as a new key parameter for improving the performance of Si-based electronic and thermoelectric nanodevices, as well as of that of nanomechanical resonators (NEMS). This work opens new possibilities for novel thermal experiments and designs directed to manipulate heat at such scales.

Article reference:

Sanghamitra Neogi, J. Sebastian Reparaz, Luiz Felipe C. Pereira, Bartlomiej Graczykowski, Markus R. Wagner, Marianna Sledzinska, Andrey Shchepetov, Mika Prunnila, Jouni Ahopelto, Clivia M. Sotomayor-Torres, and Davide Donadio. Tuning Thermal Transport in Ultrathin Silicon Membranes by Surface Nanoscale Engineering. ACS Nano. DOI: 10.1021/nn506792d. Publication Date (Web): March 31, 2015. Available in the ASAP section.

More information:
Prof. Dr. Davide Donadio, Max-Planck-Institut fuer Polymerfoschung, Mainz, Germany (donadio@mpip-mainz.mpg.de)
Prof. Dr. Jouni Ahopelto, VTT Technical Research Centre of Finland (jouni.ahopelto@vtt.fi)
Prof. Dr. Clivia M. Sotomayor Torres, Catalan Institute of Nanoscience and Nanotechnology ICN2 (clivia.sotomayor@icn.cat)

Press Contacts:
Institut Català de Nanociència i Nanotecnologia (ICN2) www.icn2.cat
Àlex Argemí (alex.argemi@icn.cat, Tel .: +34 937.372.607, +34 635.861.543), Communication Manager
Ana de la Osa (ana.delaosa@icn.cat, Tel .: +34 937.372.606), Events Officer


Provided by Catalan Institute of Nanoscience and Nanotechnology

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

New technique accurately digitizes transparent objects

A new imaging technique makes it possible to precisely digitize clear objects and their surroundings, an achievement that has eluded current state-of-the-art 3D rendering methods. The ability to create detailed, 3D digital ...

Gravitational waves may oscillate, just like neutrinos

(Phys.org)—Using data from the first-ever gravitational waves detected last year, along with a theoretical analysis, physicists have shown that gravitational waves may oscillate between two different forms called "g" and ...

Detecting cosmic rays from a galaxy far, far away

In an article published today in the journal Science, the Pierre Auger Collaboration has definitively answered the question of whether cosmic particles from outside the Milky Way Galaxy. The article, titled "Observation of ...

Physicists publish new findings on electron emission

Even more than 100 years after Einstein's explanation of photoemission the process of electron emission from a solid material upon illumination with light still poses challenging surprises. In the report now published in ...

Why poison frogs don't poison themselves

Don't let their appearance fool you: Thimble-sized, dappled in cheerful colors and squishy, poison frogs in fact harbor some of the most potent neurotoxins we know. With a new paper published in the journal Science, scientists ...

Early trilobites had stomachs, new fossil study finds

Exceptionally preserved trilobite fossils from China, dating back to more than 500 million years ago, have revealed new insights into the extinct marine animal's digestive system. Published today in the journal PLOS ONE, ...