£6m funding boost for super-fast computers of the future

September 1st, 2009
Computers which use light to process large amounts of data faster than ever before are just one of many groundbreaking potential applications of a new £6 million research programme at Queen’s University Belfast and Imperial College London, launched today, 1 September 2009.

The Engineering and Physical Sciences Research Council (EPSRC) is funding the two universities to establish a world-leading research programme on the fundamental science of so-called ‘nanoplasmonic devices’.

Nanoplasmonic devices’ key components are tiny nanoscale metal structures - more then 100 times smaller than the width of a human hair - that guide and direct light.

The structures have been tailor-made to interact with light in an unusual and highly controlled way. This means they could one day be used to build new kinds of super-high-speed ‘optical computers’ - so named because they would process information using light signals, instead of the electric currents used by today’s computers. 

At present, the speed with which computers process information is limited by the time it takes for the information to be transferred between electronic components. Currently this information is transferred using nanoscale metallic wires that transmit the signals as an electric current.

To speed up the process, the scientists at Queen’s and Imperial hope to develop a way of sending the signals along the same wires in the form of light.

In order to achieve this, they are developing a raft of new metallic devices including tiny nanoscale sources of light, nanoscale ‘waveguides’ to guide light along a desired route, and nanoscale detectors to pick up the light signals.

Similar approaches may also help in the development of devices for faster internet services.

Professor Anatoly Zayats from the Queen’s University’s Centre for Nanostructured Media who leads the project said: “This is basic research into how light interacts with matter on the nanoscale. But we will work together with and listen to our industrial partners to direct research in the direction that hopefully will lead to new improved products and services that everyone can buy from the shelf.”

Professor Stefan Maier, who leads the research team at Imperial added: “This is an exciting step towards developing computers that use light waves, not electrical current, to handle data and process information. In the future these optical computers will provide us with more processing power and higher speed. This will also open the door to a world of possibilities in scientific fields at the interface with the biosciences, and perhaps even in the world of personal computing.”

The project is also supported by INTEL, Seagate, Ericsson, Oxonica, IMEC and the National Physics Laboratory.

Source: Queen's University, Belfast

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

Male dolphins offer gifts to attract females

Researchers from The University of Western Australia have captured a rare sexual display: evidence of male humpback dolphins presenting females with large marine sponges in an apparent effort to mate.

The microscopic origin of efficiency droop in LEDs

Light-emitting diodes—or LEDs, as they are commonly known—have been slowly replacing incandescent light bulbs in applications ranging from car taillights to indicators on electronics since their invention in the 1960s.

Uncovering the origins of galaxies' halos

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

Study identifies new malaria parasites in wild bonobos

Malaria parasites, although widespread among wild chimpanzees and gorillas, have not been detected in bonobos, a chimp cousin. Reasoning that previous studies may have missed infected bonobo populations, a team led by Beatrice ...