Printed photonic crystal mirrors enable membrane lasers on silicon

July 23rd, 2012
UT Arlington professor Cheng Luo can envision the day that a flexible cell phone could be folded and placed in a pocket like a billfold or that a laptop computer could be rolled up and stored.

Through an active $300,000 National Science Foundation grant, the mechanical and aerospace engineering professor is developing a process called “micropunching lithography.” The process is used to create lightweight, low-cost and more flexible polymer-based devices that have the potential to replace silicon-based material commonly used in computers and other electronic devices.

Luo’s work was recently published in the June 2012 North America edition of International Innovation. His project has garnered three grants totaling about $700,000.

“Practical applications for these microstructures could be in everything from glucose monitoring and delivery of chemicals in treating water pipes,” Luo said.

Micropunching lithography involves two operations: cutting and drawing. Luo said in these two operations polymers are deformed using rigid and soft molds, respectively, creating desired polymer channels and sidewalls that can be used for detection and delivery.

Erian Armanios, chairman of the UT Arlington Mechanical and Aerospace Engineering Department, said Luo’s process has diverse applications.

“These microstructures of conducting polymers could be used as sensors and actuators for engineering and biomedical applications,” Armanios said.

Luo joined the UT Arlington College of Engineering in 2007 and has focused his research on mechanics, microfabrication and nanofabrication, particularly with biomedical applications.

Provided by University of Texas at Arlington

This Phys.org Science News Wire page contains a press release issued by an organization mentioned above and is provided to you “as is” with little or no review from Phys.Org staff.

More news stories

New discovery: Common jellyfish is actually two species

University of Delaware professor Patrick Gaffney and alumnus Keith Bayha, a research associate with the Smithsonian's National Museum of Natural History, have determined that a common sea nettle jellyfish is actually two ...

Cassini image mosaic: A farewell to Saturn

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...

Study shows how to get sprayed metal coatings to stick

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...