Clues from soured milk reveal how gold veins form

Studying examples of these deposits from the Brucejack Mine in northwestern British Columbia, McGill Professor Anthony Williams-Jones of the Department of Earth and Planetary Sciences and Ph.D. student Duncan McLeish have discovered that these gold deposits form much like soured milk. When milk goes sour, the butterfat particles clump together to form a jelly.

Q&A with Anthony Williams-Jones and Duncan McLeish

What did you set to find out?

Scientists have long known that gold deposits form when hot water flows through rocks, dissolving minute amounts of gold and concentrating it in cracks in the Earth's crust at levels invisible to the naked eye. In rare cases, the cracks are transformed into veins of solid gold centimetres thick. But how do fluids with such low concentrations of gold produce rare ultrahigh-grade gold deposits?

What did you discover?

Our findings solve the paradox of "ultrahigh-grade" or "bonanza" gold formation, which has frustrated scientists for over a century. The paradox of bonanza gold deposits is that there is simply not enough time for them to form, they should not exist, but they do!

As the concentration of gold in hot water is very low, very large volumes of fluid need to flow through the cracks in the Earth's crust to deposit mineable concentrations of gold. This process would require millions of years to fill a single centimetre wide crack with gold, whereas these cracks typically seal in days, months, or years.

McGill Colloidal Au research team study a mineralized (gold-bearing) vein underground at the Brucejack mine. Credit: Duncan McLeish

McGill Professor Anthony (Willy) Williams-Jones and Pretium Resources Inc. geologist Joel Ashburner study a mineralized (gold-bearing) vein on surface at the Brucejack mine. Credit: Duncan McLeish

Ultra-high-grade (bonanza) occurrence of gold in exploration drill core from the Brucejack mine. Credit: Pretium Resources Inc.