Related topics: light · laser · galaxies · physical review letters · stars

Webb telescope probably didn't find life on an exoplanet—yet

Recent reports of NASA's James Webb Space Telescope finding signs of life on a distant planet understandably sparked excitement. A new study challenges this finding, but also outlines how the telescope might verify the presence ...

New tech enables deep tissue imaging during surgery

Hyperspectral imaging (HSI) is a state-of-the-art technique that captures and processes information across a given electromagnetic spectrum. Unlike traditional imaging techniques that capture light intensity at specific wavelengths, ...


In physics, the wavelength of a sinusoidal wave is the spatial period of the wave – the distance over which the wave's shape repeats. It is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings, and is a characteristic of both traveling waves and standing waves. Wavelength is commonly designated by the Greek letter lambda (λ). The concept can also be applied to periodic waves of non-sinusoidal shape. The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

Assuming a sinusoidal wave moving at a fixed wave speed, wavelength is inversely proportional to frequency: waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths.

Examples of wave-like phenomena are sound waves, light, and water waves. A sound wave is a periodic variation in air pressure, while in light and other electromagnetic radiation the strength of the electric and the magnetic field vary. Water waves are periodic variations in the height of a body of water. In a crystal lattice vibration, atomic positions vary periodically in both lattice position and time.

Wavelength is a measure of the distance between repetitions of a shape feature such as peaks, valleys, or zero-crossings, not a measure of how far any given particle moves. For example, in waves over deep water a particle in the water moves in a circle of the same diameter as the wave height, unrelated to wavelength.

This text uses material from Wikipedia, licensed under CC BY-SA