Optical superoscillation without side waves

Optical superoscillation refers to a wave packet that can oscillate locally in a frequency exceeding its highest Fourier component. This intriguing phenomenon enables production of extremely localized waves that can break ...

A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion ...

Surprising neutrino decoherence inside supernovae

Neutrinos are elementary particles known for displaying weak interactions. As a result, neutrinos passing each other in the same place hardly notice one another. Yet, neutrinos inside a supernova collectively behave differently ...

A direct view on spin-waves

Spin-waves are promising candidates for future information processing schemes as there is almost no frictional heating in magnetic transport. Information encoding, however, is only possible in spin-wave packets. A group of ...

New analysis shows a way to self-propel subatomic particles

Some physical principles have been considered immutable since the time of Isaac Newton: Light always travels in straight lines. No physical object can change its speed unless some outside force acts on it.

Vibrational motion of a single molecule measured in real time

For the first time, chemists have succeeded in measuring vibrational motion of a single molecule with a femtosecond time resolution. The study reveals how vibration of a single molecule differs from the behaviour of larger ...

page 1 from 2