The human eye can see 'invisible' infrared light

Any science textbook will tell you we can't see infrared light. Like X-rays and radio waves, infrared light waves are outside the visual spectrum. But an international team of researchers co-led by scientists at Washington ...

Mantis shrimps could show us the way to a better DVD

( -- The remarkable eyes of a marine crustacean could inspire the next generation of DVD and CD players, according to a new study from the University of Bristol published today in Nature Photonics.

Patterns of glowing sharks get clearer with depth

A team of researchers led by scientists from the American Museum of Natural History has found that catsharks are not only able to see the bright green biofluorescence they produce, but that they increase contrast of their ...

Nano-LEDs emit full visible spectrum of light

( -- Physicists from Taiwan have designed and fabricated nano-sized light-emitting diodes (LEDs) that emit light spanning the entire visible spectrum. Although the tiny full-color LEDs aren't intended for commercial ...

Bringing back the magic in metamaterials

A single drop of blood is teeming with microorganisms—imagine if we could see them, and even nanometer-sized viruses, with the naked eye. That's a real possibility with what scientists call a "perfect lens." The lens hasn't ...

page 1 from 12

Visible spectrum

The visible spectrum is the portion of the electromagnetic spectrum that is visible to (can be detected by) the human eye. Electromagnetic radiation in this range of wavelengths is called visible light or simply light. A typical human eye will respond to wavelengths from about 380 to 750 nm. In terms of frequency, this corresponds to a band in the vicinity of 790–400 terahertz. A light-adapted eye generally has its maximum sensitivity at around 555 nm (540 THz), in the green region of the optical spectrum (see: luminosity function). The spectrum does not, however, contain all the colors that the human eyes and brain can distinguish. Unsaturated colors such as pink, and purple colors such as magenta are absent, for example, because they can only be made by a mix of multiple wavelengths.

Visible wavelengths also pass through the "optical window," the region of the electromagnetic spectrum that passes largely unattenuated through the Earth's atmosphere. (Blue light scatters more than red light, which is why the sky appears blue.) The human eye's response is defined by subjective testing (see CIE), but atmospheric windows are defined by physical measurement.

The "visible window" is so called because it overlaps the human visible response spectrum. The near infrared (NIR) windows lie just out of human response window, and the Medium Wavelength IR (MWIR) and Long Wavelength or Far Infrared (LWIR or FIR) are far beyond the human response region.

Many species can see wavelengths that fall outside the "visible spectrum". Bees and many other insects can see light in the ultraviolet, which helps them find nectar in flowers. Plant species that depend on insect pollination may owe reproductive success to their appearance in ultraviolet light, rather than how colorful they appear to us. Birds too can see into the ultraviolet (300-400 nm), and some have sex-dependent markings on their plumage, which are only visible in the ultraviolet range.

This text uses material from Wikipedia, licensed under CC BY-SA