When semiconductors stick together, materials go quantum

A team of researchers led by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a simple method that could turn ordinary semiconducting materials into quantum machines—superthin ...

Atomic nitrogen route to new 2-D semiconductors

A simple and non-destructive fabrication technique could aid the manufacture of more energy efficient two-dimensional (2-D) films needed to transform the electronics industry.

Fluorine flows in, makes material metal

By getting in the way, fluorine atoms help a two-dimensional material transform from a semiconductor to a metal in a way that could be highly useful for electronics and other applications.

Electron-hole pairs in two-dimensional crystals

When light of specific frequency hits a semiconductor crystal, it is absorbed and produces excitation, a state of higher energy. In solar cells, this energy is converted into electricity. In two-dimensional crystals, which ...

Researchers combine spintronics and nanophotonics in 2-D material

Spintronics is an emerging field in which the spin of electrons, rather than the charge, is used to process data. Unfortunately, the spin only lasts for a very short time, making it difficult to exploit in electronics. Researchers ...

page 1 from 2