Disrupting crystalline order to restore superfluidity

What if you could disrupt the crystalline order of quantum matter so that a superfluid could flow freely even at temperatures and pressures where it usually does not? This idea has been demonstrated by a team of scientists ...

Unusual sound waves discovered in quantum liquids

Ordinary sound waves—small oscillations of density—can propagate through all fluids, causing the molecules in the fluid to compress at regular intervals. Now physicists have theoretically shown that in one-dimensional ...

Secrets of superfluid helium explored

When Cornell physicists Robert Richardson, David Lee and Douglas Osheroff received the 1996 Nobel Prize for their discovery of the superfluid state of liquid helium, it was only the beginning. Now a new team of Cornell researchers, ...

Surprising nature of quantum solitary waves revealed

Solitary waves – known as solitons – appear in many forms. Perhaps the most recognizable is the tsunami, which forms following a disruption on the ocean floor and can travel, unabated, at high speeds for hundreds of miles.

A stream of superfluid light

Scientists have known for centuries that light is composed of waves. The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that ...

New insight into superfluids reveals a storm at the surface

The discovery of a 'storm' layer created when superfluid helium flows across a rough surface has turned a century of understanding about one of the most important discoveries in quantum physics on its head.

From black holes to helium

A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space—is also true for cold helium atoms that can be studied in laboratories.

page 6 from 11