Producing four top quarks at once to explore the unknown

For several decades, particle physicists have been trying to better understand nature at the smallest distances by colliding particles at the highest energies. While the Standard Model of particle physics has successfully ...

Observations challenge cosmological theories

Recent observations have created a puzzle for astrophysicists: Since the Big Bang, fewer galaxy clusters have formed over time than were actually expected. Physicists from the university of Bonn have now confirmed this phenomenon. ...

ATLAS Experiment releases new study of ultra-rare B-meson decay

The study of hadrons—particles that combine quarks to form mesons or baryons—is a vital part of the physics programme by researchers of the ATLAS Experiment at CERN. Their analysis has not only perfected the understanding ...

The hunt for leptoquarks is on

Matter is made of elementary particles, and the Standard Model of particle physics states that these particles occur in two families: leptons (such as electrons and neutrinos) and quarks (which make up protons and neutrons). ...

Breaking the symmetry between fundamental forces

A fraction of a second after the Big Bang, a single unified force may have shattered. Scientists from the CDF and DZero Collaborations used data from the Fermilab Tevatron Collider to re-create the early universe conditions. ...

The potential harbingers of new physics persist in LHC data

For some time now, researchers have noted several anomalies in the decays of beauty mesons in the data coming in from the LHCb experiment at the Large Hadron Collider. Are they more than just statistical fluctuations? The ...

page 3 from 23