Long-sought decay of Higgs boson observed

Six years after its discovery, the Higgs boson has at last been observed decaying to fundamental particles known as bottom quarks. The finding, presented today at CERN by the ATLAS and CMS collaborations at the Large Hadron ...

Could 'Higgsogenesis' explain dark matter?

(Phys.org) —The recently discovered Higgs boson is best known for its important role in explaining particle mass. But now some physicists are wondering if the Higgs could have played an equally significant role in generating ...

page 1 from 23

Standard Model

The Standard Model of particle physics is a theory of three of the four known fundamental interactions and the elementary particles that take part in these interactions. These particles make up all visible matter in the universe. The standard model is a gauge theory of the electroweak and strong interactions with the gauge group SU(3)×SU(2)×U(1).

Every high energy physics experiment carried out since the mid-20th century has eventually yielded findings consistent with the Standard Model. Still, the Standard Model falls short of being a complete theory of fundamental interactions because it does not include gravity, dark matter, or dark energy. It isn't quite a complete description of leptons either, because it does not describe nonzero neutrino masses, although simple natural extensions do.

This text uses material from Wikipedia, licensed under CC BY-SA