New clues about how ancient galaxies lit up the universe

NASA's Spitzer Space Telescope has revealed that some of the universe's earliest galaxies were brighter than expected. The excess light is a byproduct of the galaxies releasing incredibly high amounts of ionizing radiation. ...

Astronomers see distant eruption as black hole destroys star

For the first time, astronomers have directly imaged the formation and expansion of a fast-moving jet of material ejected when the powerful gravity of a supermassive black hole ripped apart a star that wandered too close ...

NASA finds a large amount of water in an exoplanet's atmosphere

Much like detectives study fingerprints to identify the culprit, scientists used NASA's Hubble and Spitzer space telescopes to find the "fingerprints" of water in the atmosphere of a hot, bloated, Saturn-mass exoplanet some ...

Lava or not, exoplanet 55 Cancri e likely to have atmosphere

Twice as big as Earth, the super-Earth 55 Cancri e was thought to have lava flows on its surface. The planet is so close to its star, the same side of the planet always faces the star, such that the planet has permanent day ...

Primitive atmosphere discovered around 'Warm Neptune'

A pioneering new study uncovering the 'primitive atmosphere' surrounding a distant world could provide a pivotal breakthrough in the search to how planets form and develop in far-flung galaxies.

'Iceball' planet discovered through microlensing

Scientists have discovered a new planet with the mass of Earth, orbiting its star at the same distance that we orbit our sun. The planet is likely far too cold to be habitable for life as we know it, however, because its ...

page 1 from 23

Spitzer Space Telescope

The Spitzer Space Telescope (formerly the Space Infrared Telescope Facility, SIRTF) is an infrared space observatory launched in 2003. It is the fourth and final of NASA's Great Observatories.

The planned nominal mission period was to be 2.5 years with a pre-launch expectation that the mission could extend to five or slightly more years until the onboard liquid helium supply was exhausted. This occurred on 15 May 2009 . The two shortest wavelength modules of the IRAC camera are still operable in a "warm" (ca. 30K) telescope so surveys will continue at reduced sensitivity in these wavebands only in the Spitzer Warm Mission.

In keeping with NASA tradition, the telescope was renamed after successful demonstration of operation, on December 18, 2003. Unlike most telescopes which are named after famous deceased astronomers by a board of scientists, the name for SIRTF was obtained from a contest open to the general public.

The result was it being named in honor of Lyman Spitzer, one of the 20th century's great scientists. Though he was not the first to propose the idea of the space telescope (Hermann Oberth being the first, in Wege zur Raumschiffahrt, 1929, and also in Die Rakete zu den Planetenräumen, 1923), Spitzer has been cited for his pioneering contributions to rocketry and astronomy, as well as "his vision and leadership in articulating the advantages and benefits to be realized from the Space Telescope Program."

The US$800 million Spitzer was launched from Cape Canaveral Air Force Station, on a Delta II 7920H ELV rocket, Monday, 25 August 2003 at 13:35:39 UTC-5 (EDT). It follows a rather unusual orbit, heliocentric instead of geocentric, trailing and drifting away from Earth's orbit at approximately 0.1 astronomical unit per year (a so-called "earth-trailing" orbit). The primary mirror is 85 cm in diameter, f/12 and made of beryllium and was cooled to 5.5 K. The satellite contains three instruments that allowed it to perform imaging and photometry from 3 to 180 micrometers, spectroscopy from 5 to 40 micrometers, and spectrophotometry from 5 to 100 micrometers.

This text uses material from Wikipedia, licensed under CC BY-SA