Using time dilation to measure curvature of space-time

A team of researchers working at Stanford University has used time dilation in an atomic fountain to measure the curvature of space-time. In their study, reported in the journal Science, the group used the fountain as an ...

Scientists create new recipe for single-atom transistors

Once unimaginable, transistors consisting only of several-atom clusters or even single atoms promise to become the building blocks of a new generation of computers with unparalleled memory and processing power. But to realize ...

Tiny optical cavity could make quantum networks possible

Engineers at Caltech have shown that atoms in optical cavities—tiny boxes for light—could be foundational to the creation of a quantum internet. Their work was published on March 30 by the journal Nature.

A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This ...

Scientists create world's thinnest magnet

The development of an ultrathin magnet that operates at room temperature could lead to new applications in computing and electronics—such as high-density, compact spintronic memory devices—and new tools for the study ...

Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could ...

When light loses symmetry, it can hold particles

Optical tweezers use light to immobilize microscopic particles as small as a single atom in 3D space. The basic principle behind optical tweezers is the momentum transfer between light and the object being held. Analogous ...

Clusters of gold atoms form peculiar pyramidal shape

Freestanding clusters of 20 gold atoms take the shape of a pyramid, researchers have discovered. This is in contrast with most elements, which organize themselves by forming shells around one central atom. The team of researchers ...

page 2 from 24