New method for generating monochromatic light in storage rings

When ultrafast electrons are deflected, they emit light—synchrotron radiation. This is used in so-called storage rings in which magnets force the particles onto a closed path. This light is longitudinally incoherent and ...

The Milky Way's eROSITA bubbles are large and distant

In 2020, astronomers discovered a large hourglass-shaped structure in or near the center of our Milky Way galaxy. Dubbed "eROSITA bubbles," there have been a few different hypotheses proposed to explain their precise nature. ...

Existence of lunar lava tube cave demonstrated

The presence of conduits below the lunar surface has been theorized and extensively debated for at least 50 years. Now, an analysis of NASA Lunar Reconnaissance Orbiter radar data reveals what lies below the Mare Tranquillitatis.

page 1 from 3


In physics, radiation describes any process in which energy emitted by one body travels through a medium or through space, ultimately to be absorbed by another body. Non-physicists often associate the word with ionizing radiation (e.g., as occurring in nuclear weapons, nuclear reactors, and radioactive substances), but it can also refer to electromagnetic radiation (i.e., radio waves, infrared light, visible light, ultraviolet light, and X-rays) which can also be ionizing radiation, to acoustic radiation, or to other more obscure processes. What makes it radiation is that the energy radiates (i.e., it travels outward in straight lines in all directions) from the source. This geometry naturally leads to a system of measurements and physical units that are equally applicable to all types of radiation.

This text uses material from Wikipedia, licensed under CC BY-SA