Quarks in six-packs: Exotic Particle Confirmed

For decades, physicists have searched in vain for exotic bound states comprising more than three quarks. Experiments performed at Jülich's accelerator COSY have now shown that, in fact, such complex particles do exist in ...

The universe's primordial soup flowing at CERN

Researchers have recreated the universe's primordial soup in miniature format by colliding lead atoms with extremely high energy in the 27 km long particle accelerator, the LHC at CERN in Geneva. The primordial soup is a ...

Researchers make progress toward solving the proton spin puzzle

Scientists in a research group led by Constantia Alexandrou, professor of physics at the University of Cyprus and the Cyprus Institute, made a crucial step towards solving a three-decades-old puzzle: They have successfully ...

Homing in on the Higgs boson interaction with the charm quark

Since the discovery of the Higgs boson a decade ago, the ATLAS and CMS collaborations at the Large Hadron Collider (LHC) have been hard at work trying to unlock the secrets of this special particle. In particular, the collaborations ...

A dense quark liquid is distinct from a dense nucleon liquid

Atomic nuclei are made of nucleons (like protons and neutrons), which themselves are made of quarks. When crushed at high densities, nuclei dissolve into a liquid of nucleons and, at even higher densities, the nucleons themselves ...

Particle trio exceeds expectations at Large Hadron Collider

The ATLAS experiment has confirmed that a trio of particles—a top-antitop quark pair and a W boson—occurs more frequently than expected in the wake of proton-proton collisions inside the Large Hadron Collider (LHC).

First indirect evidence of so-far undetected strange baryons

(Phys.org) —New supercomputing calculations provide the first evidence that particles predicted by the theory of quark-gluon interactions but never before observed are being produced in heavy-ion collisions at the Relativistic ...

page 7 from 30