Super strong magnetic fields leave imprint on nuclear matter

A new analysis by the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, provides the first direct evidence of the ...

Teasing strange matter from the ordinary

In a unique analysis of experimental data, nuclear physicists have made the first-ever observations of how lambda particles, so-called "strange matter," are produced by a specific process called semi-inclusive deep inelastic ...

Physicists track sequential 'melting' of upsilons

Scientists using the Relativistic Heavy Ion Collider (RHIC) to study some of the hottest matter ever created in a laboratory have published their first data showing how three distinct variations of particles called upsilons ...

Data reveal a surprising preference in particle spin alignment

Given the choice of three different "spin" orientations, certain particles emerging from collisions at the Relativistic Heavy Ion Collider (RHIC), an atom smasher at the U.S. Department of Energy's (DOE) Brookhaven National ...

Physicists confirm hitch in proton structure

Nuclear physicists have confirmed that the current description of proton structure isn't all smooth sailing. A new precision measurement of the proton's electric polarizability performed at the U.S. Department of Energy's ...

page 2 from 30