Physicists reveal why matter dominates universe

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

Masses of common quarks are revealed

(PhysOrg.com) -- A research group co-founded by Cornell physics professor G. Peter Lepage has calculated the mass of the three lightest and, therefore, most elusive quarks: up, down and strange.

A particle purely made of nuclear force

Scientists at TU Wien (Vienna) have calculated that the meson f0(1710) could be a very special particle – the long-sought-after glueball, a particle composed of pure force.

CERN collides heavy nuclei at new record high energy

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Using the K computer, scientists predict exotic "di-Omega" particle

Based on complex simulations of quantum chromodynamics performed using the K computer, one of the most powerful computers in the world, the HAL QCD Collaboration, made up of scientists from the RIKEN Nishina Center for Accelerator-based ...

First detection of exotic 'X' particles in quark-gluon plasma

In the first millionths of a second after the Big Bang, the universe was a roiling, trillion-degree plasma of quarks and gluons—elementary particles that briefly glommed together in countless combinations before cooling ...

page 2 from 30