Protons reveal universal phenomenon of maximal entanglement

When a high-energy photon strikes a proton, secondary particles diverge in a way that indicates that the inside of the proton is maximally entangled. An international team of physicists with the participation of the Institute ...

How do quark-gluon-plasma fireballs explode into hadrons?

Quark gluon plasma (QGP) is an exciting state of matter that scientists create in a laboratory by colliding two heavy nuclei. These collisions produce a QGP fireball. The fireball expands and cools following the laws of hydrodynamics, ...

Quantum tool opens door to uncharted phenomena

Entanglement is a quantum phenomenon where the properties of two or more particles become interconnected in such a way that one cannot assign a definite state to each individual particle anymore. Rather, we have to consider ...

LHCb: Correlations show nuances of the particle birth process

High-energy ion collisions at the Large Hadron Collider are capable of producing a quark-gluon plasma. But are heavy atomic nuclei really necessary for its formation? And above all: how are secondary particles later born ...

page 2 from 40