New derivation of pi links quantum physics and pure math

In 1655 the English mathematician John Wallis published a book in which he derived a formula for pi as the product of an infinite series of ratios. Now researchers from the University of Rochester, in a surprise discovery, ...

Enlisting symmetry to protect quantum states from disruptions

Symmetry permeates nature, from the radial symmetry of flowers to the left-right symmetry of the human body. As such, it provides a natural way of classifying objects by grouping those that share the same symmetry. This is ...

Building quantum states with individual silicon atoms

(Phys.org) —By introducing individual silicon atom 'defects' using a scanning tunnelling microscope, scientists at the London Centre for Nanotechnology have coupled single atoms to form quantum states.

Testing Einstein's E=mc2 in outer space

(Phys.org)—University of Arizona physicist Andrei Lebed has stirred the physics community with an intriguing idea yet to be tested experimentally: The world's most iconic equation, Albert Einstein's E=mc2, may be correct ...

page 5 from 19