Creating light sources for nanochips

(PhysOrg.com) -- "One of the most important goals in the optics community is to create and manipulate light on chip," Yinan Zhang tells PhysOrg.com. "This is especially important when it comes to improving the performance ...

'Squeezing' light into quantum dots

(PhysOrg.com) -- “Quantum wells have been instrumental in telecommunications, enabling light amplification,” Patanjali Kambhampati tells PhysOrg.com, “but theory has suggested that a very small - colloidal - quantum ...

Quantum dots as midinfrared emitters

(PhysOrg.com) -- “People are interested in the mid-infrared,” Dan Wasserman tells PhysOrg.com. Infrared light has a wavelength longer than visible light, and many molecules have numerous very strong optical resonances ...

Scientists go deep to quantify perovskite properties

Scientists led by Rice University and Los Alamos National Laboratory have discovered electronic properties in quantum-scale devices that are likely to impact the growing field of low-cost perovskite based optoelectronics.

A curious quirk brings organic diode lasers one step closer

Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors ...

Physicists build highly efficient 'no-waste' laser

A team of University of California, San Diego researchers has built the smallest room-temperature nanolaser to date, as well as an even more startling device: a highly efficient, "thresholdless" laser that funnels all its ...

Keeping cool with quantum wells

University of Tokyo researchers have announced a new approach for electrical cooling without the need for moving parts. By applying a bias voltage to quantum wells made of the semiconductor aluminum gallium arsenide, electrons ...

page 1 from 3