New insights into quantum measurements

Researchers from the University of Bristol have shed new light on the process of quantum measurement, one of the defining, and most quantum features of quantum mechanics.

Travel through wormholes is possible, but slow

A Harvard physicist has shown that wormholes can exist: tunnels in curved space-time, connecting two distant places, through which travel is possible.

The golden path towards new two-dimensional semiconductors

Two-dimensional (2-D) semiconductors are promising for quantum computing and future electronics. Now, researchers can convert metallic gold into semiconductor and customize the material atom-by-atom on boron nitride nanotubes.

Nanocomponent is a quantum leap for Danish physicists

University of Copenhagen researchers have developed a nanocomponent that emits light particles carrying quantum information. Less than one-tenth the width of a human hair, the miniscule component makes it possible to scale ...

In the future, everyone might use quantum computers

Computers were once considered high-end technology, only accessible to scientists and trained professionals. But there was a seismic shift in the history of computing during the second half of the 1970s. It wasn't just that ...

page 1 from 2

Quantum mechanics

Quantum mechanics is a set of principles underlying the most fundamental known description of all physical systems at the submicroscopic scale (at the atomic level). Notable among these principles are simultaneous wave-like and particle-like behavior of matter and radiation ("Wave–particle duality"), and the prediction of probabilities in situations where classical physics predicts certainties. Classical physics can be derived as a good approximation to quantum physics, typically in circumstances with large numbers of particles. Thus quantum phenomena are particularly relevant in systems whose dimensions are close to the atomic scale, such as molecules, atoms, electrons, protons and other subatomic particles. Exceptions exist for certain systems which exhibit quantum mechanical effects on macroscopic scale; superfluidity is one well-known example. Quantum theory provides accurate descriptions for many previously unexplained phenomena such as black body radiation and stable electron orbits. It has also given insight into the workings of many different biological systems, including smell receptors and protein structures.

This text uses material from Wikipedia, licensed under CC BY-SA