Mathematicians prove the Hardy-Littlewood-Sobolev inequalities

RUDN University mathematicians have proven the Hardy-Littlewood-Sobolev (HLS) inequalities for the class of generalized Riesz potentials. These results extend the scope of these potentials in mathematics and physics because ...

Black holes sometimes behave like conventional quantum systems

A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries. As a result they found that black holes thermalize ...

Chemists observe 'spooky' quantum tunneling

A molecule of ammonia, NH3, typically exists as an umbrella shape, with three hydrogen atoms fanned out in a nonplanar arrangement around a central nitrogen atom. This umbrella structure is very stable and would normally ...

Evading Heisenberg isn't easy

EPFL researchers, with colleagues at the University of Cambridge and IBM Research-Zurich, unravel novel dynamics in the interaction between light and mechanical motion with significant implications for quantum measurements ...

Blanket of light may give better quantum computers

Quantum mechanics is one of the most successful theories of natural science, and although its predictions are often counterintuitive, not a single experiment has been conducted to date of which the theory has not been able ...

Human intelligence: have we reached the limit of knowledge?

Despite huge advances in science over the past century, our understanding of nature is still far from complete. Not only have scientists failed to find the Holy Grail of physics—unifying the very large (general relativity) ...

Cooling nanotube resonators with electrons

Mechanical resonators have been used with great success as new resources in quantum technology. Carbon nanotube mechanical resonators have shown to be excellent ultra-high sensitive devices for the study of new physical phenomena ...

page 1 from 23

Quantum mechanics

Quantum mechanics is a set of principles underlying the most fundamental known description of all physical systems at the submicroscopic scale (at the atomic level). Notable among these principles are simultaneous wave-like and particle-like behavior of matter and radiation ("Wave–particle duality"), and the prediction of probabilities in situations where classical physics predicts certainties. Classical physics can be derived as a good approximation to quantum physics, typically in circumstances with large numbers of particles. Thus quantum phenomena are particularly relevant in systems whose dimensions are close to the atomic scale, such as molecules, atoms, electrons, protons and other subatomic particles. Exceptions exist for certain systems which exhibit quantum mechanical effects on macroscopic scale; superfluidity is one well-known example. Quantum theory provides accurate descriptions for many previously unexplained phenomena such as black body radiation and stable electron orbits. It has also given insight into the workings of many different biological systems, including smell receptors and protein structures.

This text uses material from Wikipedia, licensed under CC BY-SA