'Resonance' raman spectroscopy with 1-nanometer resolution

Tip-enhanced Raman spectroscopy resolved "resonance" Raman scattering with 1-nm resolution in ultrathin zinc oxide films epitaxially grown on a single-crystal silver surface. Tip-enhanced "resonance" Raman scattering can ...

Directional plasmon excitation at molecular scales

NUS scientists have developed a method for directional excitation of plasmons at molecular length scale with electrically driven sources. Photonic devices which make use of light can transmit information much faster than ...

Light may magnetise non-magnetic metals, propose physicists

Physicists from Nanyang Technological University, Singapore (NTU Singapore) and the Niels Bohr Institute in Copenhagen, Denmark, have devised a method to turn a non-magnetic metal into a magnet using laser light.

page 1 from 23


In physics, a plasmon is a quantum of plasma oscillation. The plasmon is a quasiparticle resulting from the quantization of plasma oscillations just as photons and phonons are quantizations of light and mechanical vibrations, respectively (though the photon is an elementary particle, not a quasiparticle). Thus, plasmons are collective oscillations of the free electron gas density, for example, at optical frequencies. Plasmons can couple with a photon to create another quasiparticle called a plasma polariton.

Since plasmons are the quantization of classical plasma oscillations, most of their properties can be derived directly from Maxwell's equations.

This text uses material from Wikipedia, licensed under CC BY-SA