Data reveal a surprising preference in particle spin alignment

Given the choice of three different "spin" orientations, certain particles emerging from collisions at the Relativistic Heavy Ion Collider (RHIC), an atom smasher at the U.S. Department of Energy's (DOE) Brookhaven National ...

Researchers turn liquid metal into a plasma

Most laypersons are familiar with the three states of matter as solids, liquids, and gases. But there are other forms that exist. Plasmas, for example, are the most abundant form of matter in the universe, found throughout ...

What triggers flow fluctuations in heavy-ion collision debris?

Scientists in the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC)—an atom smasher at the U.S. Department of Energy's Brookhaven National Laboratory—have published a comprehensive analysis aimed at determining ...

Terahertz light from superconducting stripes

Why do some materials carry electrical currents without any resistance only when cooled to near absolute zero while others do so at comparatively high temperatures? This key question continues to vex scientists studying the ...

Building a star in a smaller jar

Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have gained a better understanding of a promising method for improving the confinement of superhot fusion plasma using magnetic ...

The exceptional origin of EUV light in hot tin plasma

Extreme ultraviolet light (EUV light) does not naturally occur on Earth, but it can be produced. In nanolithography machines, EUV light is generated using an immensely hot tin plasma. Researchers at ARCNL, in close collaboration ...

page 1 from 4