Researchers measure rare particle decay with high precision

At CERN's Large Hadron Collider (LHC), studies of rare processes allow scientists to infer the presence of heavy particles, including undiscovered particles, that cannot be directly produced. Such particles are widely anticipated ...

What comes after the Higgs boson

Ten years ago this week, two international collaborations of groups of scientists, including a large contingent from Caltech, confirmed that they had found conclusive evidence for the Higgs boson, an elusive elementary particle, ...

New exotic matter particle, a tetraquark, discovered

Today, the LHCb experiment at CERN is presenting a new discovery at the European Physical Society Conference on High Energy Physics (EPS-HEP). The new particle discovered by LHCb, labeled as Tcc+, is a tetraquark—an exotic ...

Where does the Earth's heat come from?

Earth generates heat. The deeper you go, the higher the temperature. At 25km down, temperatures rise as high as 750°C; at the core, it is said to be 4,000°C. Humans have been making use of hot springs as far back as antiquity, ...

Solving for nuclear structure in light nuclei

In nuclei, all the fundamental forces of nature are at play. The dense region at the center of an atom—where the protons and neutrons are found—is a place where scientists can test their understanding of the fundamental ...

A blue spark to shine on the origin of the universe

An interdisciplinary team of scientists led by researchers from DIPC, Ikerbasque and UPV/EHU, has demonstrated that it is possible to build an ultra-sensitive sensor based on a new fluorescent molecule able to detect the ...

page 1 from 6