Quantum dark states lead to an advantage in noise reduction

While atomic clocks are already the most precise timekeeping devices in the universe, physicists are working hard to improve their accuracy even further. One way is by leveraging spin-squeezed states in clock atoms.

The tale of two clocks: Advancing the precision of timekeeping

Historically, JILA (a joint institute established by the National Institute of Standards and Technology [NIST] and the University of Colorado Boulder) has been a world leader in precision timekeeping using optical atomic ...

Brighter comb lasers on a chip mean new applications

Researchers have shown that dissipative Kerr solitons (DKSs) can be used to create chip-based optical frequency combs with enough output power for use in optical atomic clocks and other practical applications. The advance ...

A quantum network of entangled atomic clocks

For the first time, scientists at the University of Oxford have been able to demonstrate a network of two entangled optical atomic clocks and show how the entanglement between the remote clocks can be used to improve their ...

page 1 from 7