Physicists develop highly robust time crystal

A team from TU Dortmund University recently succeeded in producing a highly durable time crystal that lived millions of times longer than could be shown in previous experiments. By doing so, they have corroborated an extremely ...

Solid-state qubits: Forget about being clean, embrace mess

New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal, and some will form pairs that ...

Sensing and controlling microscopic spin density in materials

Electronic devices typically use the charge of electrons, but spin—their other degree of freedom—is starting to be exploited. Spin defects make crystalline materials highly useful for quantum-based devices such as ultrasensitive ...

New study uncover nuclear spin's impact on biological processes

A research team led by Prof. Yossi Paltiel at the Hebrew University of Jerusalem with groups from HUJI, Weizmann and IST Austria has published a new study that reveals the influence of nuclear spin on biological processes. ...

page 1 from 6