Nanoscientists develop the 'ultimate discovery tool'

The discovery power of the gene chip is coming to nanotechnology. A Northwestern University research team is developing a tool to rapidly test millions and perhaps even billions or more different nanoparticles at one time ...

Researchers first to create a single-molecule diode

Under the direction of Latha Venkataraman, associate professor of applied physics at Columbia Engineering, researchers have designed a new technique to create a single-molecule diode, and, in doing so, they have developed ...

How hot is Schrodinger's coffee?

A new uncertainty relation, linking the precision with which temperature can be measured and quantum mechanics, has been discovered at the University of Exeter.

Researchers build nanoscale autonomous walking machine from DNA

Researchers at The University of Texas at Austin have developed a nanoscale machine made of DNA that can randomly walk in any direction across bumpy surfaces. Future applications of such a DNA walker might include a cancer ...

page 1 from 23

Nanoscopic scale

The nanoscopic scale usually refers to structures with a length scale applicable to nanotechnology, usually cited as 1-100 nanometers. The nanoscopic scale is roughly speaking a lower bound to the mesoscopic scale for most solids.

For technical purposes, the nanoscopic scale is the size at which the expected fluctuations of the averaged properties due to the motion and behavior of individual particles can no longer be reduced to below some desirable threshold (often a few percent), and must be rigorously established within the context of any particular problem.

The 'nanoscopic scale' is sometimes marked as the point where the properties of a material change; above this point, the properties of a material are caused by 'bulk' or 'volume' effects, namely which atoms are present, how they are bonded, and in what ratios. Below this point, the properties of a material change, and while the type of atoms present and their relative orientations are still important, 'surface area effects', also referred to as quantum effects, become more apparent-these effects are due to the geometry of the material (how thick it is, how wide it is, etc), which, at these low dimensions, can have a drastic effect on quantized states, and thus the properties of a material.

This text uses material from Wikipedia, licensed under CC BY-SA