Related topics: solar cells

New power source discovered

(PhysOrg.com) -- Researchers at the Massachusetts Institute of Technology (MIT) and RMIT University have made a breakthrough in energy storage and power generation.

Mechanical engineer creates robot Venus Flytrap

(PhysOrg.com) -- Mohsen Shahinpoor, a professor of mechanical engineering at the University of Maine has created a robot version of the infamous bug eating Venus Flytrap, using a material he invented himself several years ...

Why carbon nanotubes spell trouble for cells

It's been long known that asbestos spells trouble for human cells. Scientists have seen cells stabbed with spiky, long asbestos fibers, and the image is gory: Part of the fiber is protruding from the cell, like a quivering ...

The next medical frontier: nano-surgery

(PhysOrg.com) -- Engineering professor's nanorobot could be performing non-invasive surgical procedures on patients with tumors within the next decade.

page 1 from 33

Nanomaterials

Nanomaterials is a field that takes a materials science-based approach to nanotechnology. It studies materials with morphological features on the nanoscale, and especially those that have special properties stemming from their nanoscale dimensions. Nanoscale is usually defined as smaller than a one tenth of a micrometer in at least one dimension, though this term is sometimes also used for materials smaller than one micrometer.

On 18 October 2011, the European Commission adopted the following definition of a nanomaterial:

An important aspect of nanotechnology is the vastly increased ratio of surface area to volume present in many nanoscale materials, which makes possible new quantum mechanical effects. One example is the “quantum size effect” where the electronic properties of solids are altered with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, it becomes pronounced when the nanometer size range is reached. A certain number of physical properties also alter with the change from macroscopic systems. Novel mechanical properties of nanomaterials is a subject of nanomechanics research. Catalytic activities also reveal new behaviour in the interaction with biomaterials.

This text uses material from Wikipedia, licensed under CC BY-SA