Related topics: standard model

Visualizing molecular motion of substituted 9-phosphaanthracene

Anthracene is a solid organic compound derived from coal-tar distillation. Apart from its use as a red dye, it has also been used in the field of nanographene material design, as it exhibits excellent electronic and light-emitting ...

Rare superconductor may be vital for quantum computing

Research led by the University of Kent and the STFC Rutherford Appleton Laboratory has resulted in the discovery of a new rare topological superconductor, LaPt3P. This discovery may be of huge importance to the future operations ...

Studying top quarks at high and not-so-high energies

CERN's Large Hadron Collider (LHC) is famous for colliding protons at world-record energies—but sometimes it pays to dial down the energy and see what happens under less extreme conditions. The LHC started operation in ...

Q&A: Are we on the brink of a new age of scientific discovery?

In 2001 at the Brookhaven National Laboratory in Upton, New York, a facility used for research in nuclear and high-energy physics, scientists experimenting with a subatomic particle called a muon encountered something unexpected.

page 1 from 14

Muon

The muon (pronounced /ˈmjuːɒn/; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with a unitary negative electric charge and a spin of ½. Together with the electron, the tau, and the three neutrinos, it is classified as a lepton. As is the case with other leptons, the muon is not believed to have any sub-structure at all (i.e., is not thought to be composed of any simpler particles).

The muon is an unstable subatomic particle with a mean lifetime of 2.2 µs. This comparatively long decay life time (the second longest known) is due to being mediated by the weak interaction. The only longer lifetime for an unstable subatomic particle is that for the free neutron, a baryon particle composed of quarks, which also decays via the weak force. All muons decay to three particles (an electron plus two neutrinos of different types), but the daughter particles are believed to originate newly in the decay.

Like all elementary particles, the muon has a corresponding antiparticle of opposite charge but equal mass and spin: the antimuon (also called a positive muon). Muons are denoted by μ− and antimuons by μ+. Muons were previously called mu mesons, but are not classified as mesons by modern particle physicists (see History).

Muons have a mass of 105.7 MeV/c2, which is about 200 times the mass of an electron. Since the muon's interactions are very similar to those of the electron, a muon can be thought of as a much heavier version of the electron. Due to their greater mass, muons are not as sharply accelerated when they encounter electromagnetic fields, and do not emit as much bremsstrahlung radiation. This allows muons of a given energy to penetrate far more deeply into matter than electrons, since the deceleration of electrons and muons is primarily due to energy loss by the bremsstrahlung mechanism. As an example, so-called "secondary muons", generated by cosmic rays hitting the atmosphere, can penetrate to the Earth's surface, and even into deep mines.

Because muons have a very large mass and energy compared with the decay energy of radioactivity, they are never produced by radioactive decay. They are, however, produced in copious amounts in high-energy interactions in normal matter, such as occur during certain particle accelerator experiments with hadrons, and also naturally in cosmic ray interactions with matter. These interactions usually first produce pi mesons, which then most often decay to muons.

As with the case of the other charged leptons, the muon has an associated muon neutrino. Muon neutrinos are denoted by ν μ.

This text uses material from Wikipedia, licensed under CC BY-SA