World's most powerful MRI gets set to come online

(Phys.org) —The most powerful MRI machine in the world is nearing completion. The new instrument will be able to generate 11.75 Tesla, a field strong enough to lift 60 metric tons. Squeezing out those last few Tesla (the ...

Nanoscale MRI being developed

(Phys.org)—Two independent groups of scientists in the U.S. and Germany have reduced magnetic resonance imaging (MRI) down to the nanoscale, which may enable them in the future to non-destructively detect and image small ...

New experiment corrects prediction in quantum theory

An international team of scientists is rewriting a page from the quantum physics rulebook using a University of Florida laboratory once dubbed the coldest spot in the universe.

Cloaking magnetic fields: The first 'antimagnet' device developed

Spanish researchers have designed what they believe to be a new type of magnetic cloak, which shields objects from external magnetic fields, while at the same time preventing any magnetic internal fields from leaking outside, ...

MRI zooms in on microscopic flow (w/ Video)

(PhysOrg.com) -- MRI images of water flow through a constricted microfluidic channel with the XZ axis on the left and the YZ axis on the right. Note that fast moving components directly aligned with the constricted region ...

page 1 from 18

Magnetic resonance imaging

Magnetic Resonance Imaging (MRI), or nuclear magnetic resonance imaging (NMRI), is primarily a medical imaging technique most commonly used in radiology to visualize the internal structure and function of the body. MRI provides much greater contrast between the different soft tissues of the body than computed tomography (CT) does, making it especially useful in neurological (brain), musculoskeletal, cardiovascular, and oncological (cancer) imaging. Unlike CT, it uses no ionizing radiation, but uses a powerful magnetic field to align the nuclear magnetization of (usually) hydrogen atoms in water in the body. Radio frequency (RF) fields are used to systematically alter the alignment of this magnetization, causing the hydrogen nuclei to produce a rotating magnetic field detectable by the scanner. This signal can be manipulated by additional magnetic fields to build up enough information to construct an image of the body.:36

Magnetic Resonance Imaging is a relatively new technology. The first MR image was published in 1973 and the first cross-sectional image of a living mouse was published in January 1974. The first studies performed on humans were published in 1977. By comparison, the first human X-ray image was taken in 1895.

Magnetic Resonance Imaging was developed from knowledge gained in the study of nuclear magnetic resonance. In its early years the technique was referred to as nuclear magnetic resonance imaging (NMRI). However, as the word nuclear was associated in the public mind with ionizing radiation exposure it is generally now referred to simply as MRI. Scientists still use the term NMRI when discussing non-medical devices operating on the same principles. The term Magnetic Resonance Tomography (MRT) is also sometimes used.

This text uses material from Wikipedia, licensed under CC BY-SA